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Sobre este libro

Este libro reúne notas y resoluciones de ejercicios de clase de Matemática Aplicada I (FCE–UBA). Su objetivo
es acompañar la cursada: ordenar ideas, fijar métodos y ofrecer ejemplos resueltos. Puede contener errores
u omisiones; toda corrección o sugerencia es bienvenida en jcabral@udesa.edu.ar.
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1 Técnicas de estudio basadas en evidencia

“Somos malos jueces de cuándo estamos aprendiendo bien y cuándo no. Cuando el progreso es
más dif́ıcil y más lento y no se siente productivo, tendemos a recurrir a estrategias que parecen
más fruct́ıferas, sin darnos cuenta de que las ganancias de esas estrategias suelen ser temporales.”
Brown, Roediger y McDaniel, Make It Stick: The Science of Successful Learning. (traducción
propia)

La evidencia es clara: solemos juzgar mal nuestro propio aprendizaje y preferimos métodos que “se
sienten” productivos pero no son eficientes (Brown, Roediger, y Mark A. McDaniel 2014). Por eso el primer
caṕıtulo del libro no es de cálculo ni de álgebra sino, una breve introducción a técnicas de estudio con
respaldo emṕırico.

Por qué empezar por el cómo aprender

Estudiar matemática y aplicarla a algún campo concreto como Economı́a requiere conectar definiciones for-
males con intuiciones económicas, derivar condiciones de primer orden y, a la vez, interpretar esas condiciones
con conceptos económicos. Ese “puente” exige memoria a largo plazo y flexibilidad conceptual. La literatura
en psicoloǵıa del aprendizaje muestra que dos prácticas destacan mucho por su utilidad: recuperación
activa (practice testing) y práctica espaciada (distributed practice) (Dunlosky et al. 2013; Roediger III y
Butler 2011; Cepeda, Pashler, et al. 2006; Cepeda, Vul, et al. 2008). Este caṕıtulo propone incorporar estas
y otras desde el primer d́ıa, con procedimientos concretos orientados a los temas que se tratan en los otros
caṕıtulos.

Qué evitar al momento del estudio

En general, cuando uno estudia hay ciertas conductas que se aplican por defecto sin cuestionamiento ni
cŕıtica. Estas técnicas pueden no ser las mejores ya que no son tan efectivas para mejorar la retención de lo
aprendido o porque ocupan el tiempo limitado que puede ser utilizado para otras técnicas con mayor respaldo.
Aqúı, algunas técnicas que no son recomendables debido a la falta de eficacia probada:

Releer sin más. Releer crea una sensación de familiaridad que no garantiza retención ni transferencia.
Varios estudios no encuentran ventajas de la relectura frente a métodos activos Callender y M. A. McDaniel
2009; Weinstein, McDermott, y Roediger III 2010; Agarwal et al. 2008. En este sentido, no es recomendable
releer 10 veces un teorema para intentar acordarse del mismo.

Subrayar sin criterio. La evidencia es mixta: hay trabajos que no hallan beneficios o incluso efectos
negativos si se subraya demasiado o mal Peterson 1991; Lorch y Klusewitz 1995; Winchell et al. 2018, y
otros que muestran que con instrucciones precisas puede ayudar Yue et al. 2015; Miyatsu, Nguyen, y M. A.
McDaniel 2018. Si uno decide usar esta técnica, la recomendación es que sea mı́nima y con reglas (p. ej., una
idea clave por párrafo).

Resumir. Resumir puede ayudar si uno sabe qué y cómo destilar Bretzing y Kulhavy 1979; Rinehart,
Stahl, y Erickson 1986, pero su efectividad es muy variable y suele perder frente a estrategias más activas
como la autoexplicación o el auto-cuestionamiento Bednall y Kehoe 2011; King 1992; Dunlosky et al. 2013.

Lo que śı funciona y cómo aplicarlo

1) Recuperación activa (Active Recall). Consiste en intentar recordar y reconstruir sin mirar el ma-
terial. Funciona en laboratorio y en aula, a corto y largo plazo M. A. McDaniel et al. 2007; Roediger III y
Butler 2011; Larsen, Butler, y Roediger III 2009; Schmidmaier et al. 2011; Agarwal et al. 2008. Esta idea
se basa en intentar simular situaciones de exámenes constantemente, haciéndose preguntas como ¿Cómo era
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esta fórmula? ¿Cuál es la intuición detrás de esta ecuación? ¿Qué regla se utiliza acá? Este autotesteo
requiere esfuerzo mental, el cual facilita la retención de los contenidos. Existe una relación entre el esfuerzo
mental invertido en responder una pregunta y la cantidad de tiempo que va a transcurrir hasta que uno se
olvide de cómo responderla. A mayor esfuerzo, recordamos más.

Cómo implementarlo: Al momento de leer un libro en vez de simplemente ir pasando página por
página, detenerse cada cierto tiempo y preguntarse el porqué de los pasos realizados o intentar averiguar cuál
es el procedimiento posterior para resolver un problema. Obviamente estos testeos no pueden durar demasiado
ya que consumiŕıan mucho tiempo, pero tomarse unos minutos para plantearse si uno está entendiendo lo
explicado siempre es buena idea. Una vez finalizada la lectura sobre un tema, una buena práctica que cuenta
con mucha evidencia a favor es realizar “flashcards”. Las flashcards son tarjetas que de un lado contienen
una pregunta y del otro lado una respuesta, son cortas y la idea es no estar demasiado tiempo pensando.
Por ejemplo, una flashcard puede ser ¿Cuál es la fórmula para la elasticidad precio de la demanda? y del
otro lado puede estar la fórmula. Estas flashcards pueden hacerse con lápiz y papel, pero también existen
aplicaciones que permiten crearlas digitalmente como Anki.

2) Práctica espaciada. Repartir las sesiones en el tiempo aumenta la retención Bahrick 1979; Cepeda,
Pashler, et al. 2006. El espaciado óptimo suele estar entre el 5–30% del intervalo hasta la evaluación Rohrer
y Pashler 2007; Cepeda, Vul, et al. 2008.

Cómo implementarlo: Si el examen es en 30 d́ıas y se toma 10% como gúıa, conviene programar
repasos cada 3 d́ıas (30 · 0.1 = 3). Lo ideal es espaciar las sesiones de estudio y al momento de tenerlas,
aplicar recuperación activa.

3) Autoexplicación y generación. Explicar con tus palabras por qué un paso es válido, o generar
preguntas/respuestas propias, potencia el aprendizaje y supera en general al resumen pasivo King 1992;
Weinstein, McDermott, y Roediger III 2010.

Cómo implementarlo: Después de una clase, tomar el cuaderno y ver si se entienden los pasos
algebraicos o generar una explicación propia de la interpretación de las ecuaciones, etc.

4) Intercalado (interleaving) y variación. Alternar tipos de problemas, es decir, ir cambiando de tema
constantemente. Esto dificulta un poco el estudio pero mejora la discriminación de métodos.

Cómo implementarlo: Por ejemplo, tomar ejercicios de las gúıas de forma aleatoria e intentar re-
solverlos uno después de otro, en vez de ir por los primeros 1, 2, 3 y aśı sucesivamente, saltearse ejercicios y
resolver: 2, 6, 10, 3, 8,... y aśı.

Ejemplo

Supongamos que queremos estudiar dos temas diferentes: elasticidad de demanda y derivadas compuestas.
La idea seŕıa primero tener en cuenta que si el examen es dentro de un mes, planear estudiar cada cierta
cantidad de d́ıas en vez de realizar pocas sesiones largas. Por otro lado, al momento de leer el material de
estudio, ir preguntándose si uno entiende lo que está leyendo y generar flashcards con preguntas clave: ¿Cómo
es la fórmula? ¿Para qué sirve? ¿Cómo interpreto este resultado? ¿Cuáles son los pasos a seguir? entre
otras. Una vez hecho esto, practicar ejercicios combinando los dos temas en la misma sesión y no dejando un
tema para una sesión de estudio y otro tema para otra sesión. Por último, al momento de realizar las últimas
sesiones, intentar asemejar el contexto de estudio lo máximo posible al contexto de evaluación. Utilizar
temporizadores, no tener a mano el libro para revisar las respuestas, solamente contar con las herramientas
disponibles que van a estar en el examen, etc.

El rol de las inteligencias artificiales generativas

Es imposible ignorar que los chatbots generativos hoy en d́ıa cada vez son más populares. Más que un
obstáculo, el uso de los mismos puede generar oportunidades. Algunas recomendaciones para utilizarlos
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seŕıan las siguientes:

1. Utilizarlos para generar problemas nuevos o que combinen ejercicios.

2. Solicitar intuiciones diferentes o puntos de vista distintos a los que uno tiene.

3. Usarlos para criticar nuestros razonamientos o intuiciones. Si creemos que tal vez nos equivocamos,
una buena forma es darle a la IA nuestro razonamiento y pedirle que lo analice rigurosamente.

4. Generar ideas para flashcards.

5. Generar un plan de estudio separado por d́ıas y que tenga en cuenta las técnicas propuestas anterior-
mente.

Por último, es importante recordar que cualquier inteligencia artificial generativa al d́ıa de hoy comete errores,
muchas veces sutiles y otras veces groseros. Esto último debe servir de advertencia no para restringir su uso
sino, para ser cŕıticos al momento de tomar en cuenta lo generado.
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2 Curvas de nivel

Introducción

Las curvas de nivel (o ĺıneas de contorno) de una función de dos variables z = f(x, y) se obtienen fijando un
valor constante z = c y resolviendo la ecuación

f(x, y) = c

Cada valor de c determina una curva en el plano xy que representa los puntos en los que la función adquiere
ese valor.

Regla Práctica para Graficar Curvas de Nivel

1. Fijar el valor de z: Escoger un número c (por ejemplo, c = 0, 1, −1, etc.).

2. Obtener la ecuación en x e y: Sustituir z = c en f(x, y) = c y simplificar la ecuación.

3. Identificar la forma de la curva: Reconocer si la ecuación representa un ćırculo, elipse, hipérbola,
recta u otra figura.

4. Determinar puntos clave: Encontrar intersecciones con los ejes, vértices, aśıntotas u otros puntos
notables.

5. Graficar: Con la información anterior, traza la curva en el plano xy.

Ejemplos de Curvas de Nivel

1. Ćırculo: z = x2 + y2

� Curva de nivel: Al fijar z = c, se tiene
x2 + y2 = c

� Condición: c ≥ 0, radio r =
√
c; si c < 0, no hay soluciones reales.
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x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

c = 1 c = 4 c = 9

(0, 0)

Figura 1: Curvas de nivel de z = x2 + y2: ćırculos para distintos valores de c.

2a. Elipse: z =
x2

a2
+

y2

b2

� Curva de nivel:
x2

a2
+
y2

b2
= c

� Semiejes: a
√
c en x, b

√
c en y; si c = 0, la curva se reduce al punto (0, 0)

2b. Elipse: z =
x2

a
+

y2

b
� Curva de nivel:

x2

a
+
y2

b
= c

� Forma alternativa:
x2

ac
+
y2

bc
= 1

� Semiejes:
√
ac en x,

√
bc en y; para c = 0, punto (0, 0)
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x

y

-4 -3 -2 -1 1 2 3 4

-2

-1

1

2

c = 1 c = 2 c = 3

Figura 2: Curvas de nivel de z = x2

4 + y2

1

3. Hipérbola: z = axy

� Curva de nivel:
y =

c

ax

� Casos: Para c = 0, la curva es x = 0 ∪ y = 0, es decir, los ejes coordenados.

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

c = 1

c = 2

c = −1

c = −2

Figura 3: Curvas de nivel de z = axy: hipérbolas y = c
ax
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4. Plano: ax+ by = cz

� Forma expĺıcita:

z =
a

c
x+

b

c
y

� Curvas de nivel:
ax+ by = ck

que representan rectas paralelas para distintos valores de k.

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

k = 1

k = 2

Figura 4: Curvas de nivel del plano ax+ by = cz: rectas paralelas ax+ by = ck para distintos valores de k,

5. Hipérbola: z = x2 − y2

� Curva de nivel:
x2 − y2 = c

� Casos:

– c > 0:
x2

c
− y2

c
= 1

vértices en x = ±
√
c

– c = 0:
y = x y y = −x

– c < 0:
y2

|c|
− x2

|c|
= 1

vértices en y = ±
√
|c|
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x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

c = 0 c = 1

c = 4

c = −1

c = −4

Figura 5: Curvas de nivel de z = x2 − y2: para c > 0 abren sobre el eje x; para c < 0 (rojo) abren sobre el
eje y. El caso c = 0 son las rectas y = ±x (grises, punteadas).

https://cabraljuan.github.io


Juan Andrés Cabral

3 Curvas de nivel en Economı́a

En esta sección se analiza la importancia de las curvas de nivel en el contexto económico, enfocándonos en
su uso para representar y analizar funciones de producción y utilidad.

� Curvas de Nivel: Representan conjuntos de puntos en los cuales una función de dos variables mantiene
un mismo valor. En economı́a, se utilizan para identificar combinaciones de insumos o bienes que
generan un mismo nivel de producción o satisfacción.

� Isocuantas: En funciones de producción, las curvas de nivel se denominan isocuantas, que muestran las
combinaciones de factores productivos que producen una cantidad constante de output.

� Curvas de Indiferencia: En el análisis de la utilidad, las curvas de nivel se conocen como curvas de
indiferencia y representan combinaciones de bienes que proporcionan el mismo nivel de satisfacción al
consumidor.

Propiedades Deseables de las Curvas de Nivel en Economı́a

Las curvas de nivel derivadas de funciones de utilidad deben exhibir ciertas propiedades para reflejar compor-
tamientos económicos razonables. A continuación, se describen las caracteŕısticas y la intuición económica
asociada a cada una:

1. No se Cortan

� Intuición Económica: Cada curva de nivel representa un nivel único de utilidad. Si dos curvas se
cruzaran, implicaŕıa que una misma combinación de bienes podŕıa proporcionar dos niveles diferentes
de satisfacción, lo cual es inconsistente en el análisis de preferencias.

2. Pendiente Negativa

� Intuición Económica: Para mantener constante la utilidad, un aumento en la cantidad de un bien debe
ir acompañado de una disminución en la cantidad del otro.

3. Monotonicidad

� Intuición Económica: La monotonicidad implica que al aumentar la cantidad de cualquiera de los bienes
(mientras se mantiene la otra constante), la utilidad no disminuye. En la gráfica, esto se traduce en
curvas que crecen hacia arriba y a la derecha, reflejando la preferencia por más cantidad de bienes.

4. Continuidad

� Intuición Económica: La continuidad asegura que pequeñas variaciones en las cantidades de bienes
resultan en pequeños cambios en la utilidad. Esto permite predecir el comportamiento del consumidor
sin saltos abruptos en sus niveles de satisfacción.

5. Convexidad al Origen

� Intuición Económica: A medida que se dispone de más de un bien, el consumidor está dispuesto a
sacrificar cada vez menos del otro para obtener una unidad adicional del primero. Es una manifestación
de la preferencia por combinaciones balanceadas de bienes, evitando consumir cantidades extremas de
uno solo.
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Recta Presupuestaria y Métodos de Graficación

La recta presupuestaria representa las combinaciones de dos bienes que un consumidor puede adquirir gas-
tando todo su ingreso, dados los precios de dichos bienes.

Método 1: Despejar una Variable en Función de la Otra

Ecuación general de la restricción presupuestaria:

p1q1 + p2q2 = R

Despejando q2 en función de q1:

q2 =
R

p2
− p1
p2
q1

� Intuición: La ecuación muestra que, a medida que aumenta la cantidad de q1, la cantidad de q2 debe
disminuir para mantener constante el gasto total R. La pendiente −p1

p2
refleja la tasa a la cual se puede

intercambiar bienes.

� Aplicación: Este método permite graficar la recta presupuestaria como una función lineal, facilitando
el análisis algebraico de las decisiones del consumidor.

Método 2: Utilizar los Interceptos

� Intercepto en el eje q1:

q1 =
R

p1

� Intercepto en el eje q2:

q2 =
R

p2

� Intuición: Estos interceptos representan las cantidades máximas de cada bien si el consumidor gasta
todo su ingreso en uno solo.

� Aplicación: Conociendo ambos puntos, se traza la recta que los une. Esta gráfica ilustra de manera
clara las opciones de combinación de bienes disponibles.

Curva de Costo para el Productor

La curva de isocosto representa las combinaciones de insumos que se pueden adquirir para un costo total fijo:

w1x1 + w2x2 = C

donde w1 y w2 son los precios de los insumos, x1 y x2 sus cantidades.

Isoingreso

La ĺınea de isoingreso representa las combinaciones de productos o bienes que generan un ingreso total
constante:

p1q1 + p2q2 = I
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Curvas de Indiferencia Cobb-Douglas

Las curvas de indiferencia derivadas de una función de utilidad Cobb-Douglas representan combinaciones de
bienes que otorgan un nivel constante de utilidad. Una forma general de esta función es:

U(x1, x2) = xα1x
β
2

donde α, β > 0.

Graficando

� Despejar una Variable:

x2 =

(
U0

xα1

) 1
β

o, equivalentemente,

x2 =
U1/β

x
α/β
1

Esto permite graficar la curva de indiferencia para un nivel dado de utilidad U , considerando distintos
valores de x1.

� Observaciones:

– Las curvas son convexas al origen, lo que refleja una tasa marginal de sustitución decreciente.

– Nunca tocan los ejes, ya que si x1 = 0 o x2 = 0, entonces la utilidad total es cero.

– Las curvas se ubican en el primer cuadrante, ya que se supone que el consumidor sólo considera
cantidades positivas de bienes.

Cada curva representa un nivel fijo de utilidad, y al aumentar dicho nivel, las curvas se desplazan hacia
arriba y a la derecha, reflejando preferencias monótonas.

Nota: Las funciones de producción también suelen tener forma Cobb-Douglas, en cuyo caso las curvas
de nivel se denominan isocuantas y reflejan combinaciones de factores productivos que permiten obtener una
misma cantidad de producto.
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4 Optimización con curvas de nivel

Método de Igualación de Derivadas para la Optimización con Re-
stricción

Supongamos que queremos optimizar (maximizar o minimizar) una función objetivo F (x, y) sujeta a una
restricción G(x, y) = C. La idea es asumir que, en el punto óptimo, el valor de la función objetivo es
constante y, de esta forma, expresar una de las variables en función de la otra a partir de ambas ecuaciones
(la función objetivo y la restricción). Luego, derivamos cada despeje respecto a la otra variable, igualamos las
derivadas y, a partir de esa igualdad, obtenemos una relación entre x y y que, al sustituirla en la restricción,
permite hallar la solución óptima.

El procedimiento se resume en los siguientes pasos:

1. Fijar el nivel óptimo: Se asume que en el óptimo la función objetivo alcanza un valor constante,
digamos F (x, y) = K.

2. Despejar x (o y) en función de y (o x): Se resuelve la ecuación F (x, y) = K para obtener una
expresión del tipo

x = f(y),

y se despeja la misma variable a partir de la restricción:

x = g(y) (obtenido de G(x, y) = C).

3. Derivar respecto a la otra variable: Se derivan ambas expresiones con respecto a y. Aśı se obtienen:

dx

dy

∣∣∣
objetivo

= f ′(y) y
dx

dy

∣∣∣
restricción

= g′(y).

4. Igualar las derivadas: En el punto óptimo ambas curvas son tangentes, por lo que sus pendientes
deben coincidir. Esto implica:

f ′(y) = g′(y).

Esta igualdad permite despejar una relación entre x e y (o encontrar el valor de y).

5. Realizar el proceso con el otro despeje: De manera análoga, se despeja y en función de x tanto a
partir de la función objetivo como de la restricción:

y = h(x) y y = k(x),

y se derivan ambas expresiones respecto a x:

dy

dx

∣∣∣
objetivo

= h′(x) y
dy

dx

∣∣∣
restricción

= k′(x).

Igualando estas derivadas se obtiene otra relación entre x e y. Esta segunda igualdad, junto con la
anterior, permite eliminar el parámetro K (el valor fijo de la función objetivo) y obtener una relación
única entre x e y.

6. Sustituir en la restricción: Con la relación obtenida se reemplaza en la restricción original G(x, y) =
C para calcular el valor óptimo de una de las variables y, a partir de alĺı, el otro.
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Ejemplo: Optimización de f(x, y) = x2y sujeta a 5x+ 2y = 100

Sea la función objetivo
f(x, y) = x2y,

y la restricción
5x+ 2y = 100.

En el óptimo se asume que f(x, y) = K es constante.

Despejar x en función de y

� Desde la función objetivo: Partiendo de

x2y = K,

despejamos x (tomando la rama positiva1):

x =

√
K

y
=

√
K y−1/2.

� Desde la restricción: De
5x+ 2y = 100,

se obtiene:

x =
100− 2y

5
.

� Derivar respecto a y:

– Para la función objetivo:
dx

dy
= −1

2

√
K y−3/2.

– Para la restricción:
dx

dy
= −2

5
.

� Igualar las derivadas: En el óptimo se tiene:

−1

2

√
K y−3/2 = −2

5
.

Cancelando el signo negativo y despejando
√
K:

1

2

√
K y−3/2 =

2

5
=⇒

√
K =

4

5
y3/2.

Elevando al cuadrado se obtiene:

K =
16

25
y3.

1Tomar la solución positiva del despeje es algo que comúnmente se hace en ejemplos económicos ya que las variables suelen
tener interpretación de bienes o precios, los cuales nunca podŕıan ser negativos.
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Despejar y en función de x

� Desde la función objetivo: Partiendo de

x2y = K,

despejamos y:

y =
K

x2
.

� Desde la restricción: De
5x+ 2y = 100,

despejamos y:

y =
100− 5x

2
.

� Derivar respecto a x:

– Para la función objetivo:

y = K x−2 =⇒ dy

dx
= −2K x−3.

– Para la restricción:
dy

dx
= −5

2
.

� Igualar las derivadas: Se igualan:

−2K x−3 = −5

2
.

Cancelando el signo negativo y despejando K:

2K x−3 =
5

2
=⇒ K =

5

4
x3.

Igualación de los valores de K y obtención de la relación entre x e y

De los dos procesos obtenemos:

K =
16

25
y3 y K =

5

4
x3.

Igualando:
16

25
y3 =

5

4
x3.

Multiplicamos ambos lados por 100 (o directamente despejamos) para simplificar:

16 · 4
25 · 4

y3 =
5 · 25
4 · 25

x3 =⇒ 64

100
y3 =

125

100
x3,

lo que simplifica a:
64 y3 = 125x3.

Dividiendo ambos lados por x3: (y
x

)3
=

125

64
,

y, al tomar la ráız cúbica:
y

x
=

5

4
=⇒ y =

5

4
x.
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Sustitución en la restricción para hallar x y y

Sustituyendo y = 5
4 x en la restricción

5x+ 2y = 100,

se tiene:

5x+ 2

(
5

4
x

)
= 5x+

10

4
x = 5x+

5

2
x =

10x+ 5x

2
=

15x

2
= 100.

Despejamos x:

x =
100 · 2
15

=
200

15
=

40

3
.

Luego, y es:

y =
5

4
x =

5

4
· 40
3

=
200

12
=

50

3
.

Valor óptimo de la función

Finalmente, el valor óptimo de la función es:

f

(
40

3
,
50

3

)
=

(
40

3

)2

· 50
3

=
1600

9
· 50
3

=
80000

27
.

Resumen del Método

1. Se despeja x en función de y (y viceversa) a partir de la función objetivo x2y = K y la restricción
5x+ 2y = 100.

2. Se derivan ambas expresiones con respecto a la variable correspondiente y se igualan, obteniéndose dos
relaciones que involucran K.

3. Se igualan los valores de K obtenidos en ambos procesos para eliminar el parámetro K y obtener una
relación única entre x e y.

4. Finalmente, se sustituye esta relación en la restricción para determinar los valores óptimos de x y y.

Ejemplo: Minimización de C = 3x1 + 6x2 + 180 sujeta a x1x2 = 2

Se desea minimizar
C = 3x1 + 6x2 + 180,

sujeto a la restricción
x1x2 = 2.

Fijamos un nivel constante para la función objetivo

3x1 + 6x2 + 180 = K,

Paso 1: Derivación de la Función Objetivo

Despejamos x2 en función de x1:

x2 =
K − 180− 3x1

6
.

Al derivar con respecto a x1 se obtiene:
dx2
dx1

= −3

6
= −1

2
.

Nótese que la derivada no depende de K (la constante desaparece).
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Paso 2: Derivación de la Restricción

A partir de la restricción
x1x2 = 2,

despejamos x2:

x2 =
2

x1
.

Derivamos respecto a x1 se obtiene:
dx2
dx1

= − 2

x21
.

Paso 3: Igualar las Derivadas

En el punto de tangencia entre la curva de nivel de la función objetivo y la curva de la restricción, sus
pendientes deben ser iguales. Es decir:

−1

2
= − 2

x21
.

Cancelando el signo negativo y resolviendo:

1

2
=

2

x21
=⇒ x21 = 4 =⇒ x1 = 2,

(considerando x1 > 0).

Paso 4: Determinar x2 y el Costo Óptimo

Sustituyendo x1 = 2 en la restricción:

x2 =
2

2
= 1.

Por tanto, el costo mı́nimo es:

Cmin = 3(2) + 6(1) + 180 = 6 + 6 + 180 = 192.

Método de Sustitución para la Optimización con Restricción

Supongamos que queremos optimizar (maximizar o minimizar) una función objetivo F (x, y) sujeta a una
restricción G(x, y) = C. Este método consiste en despejar de la restricción una variable, sustituir esa
expresión en la función objetivo para reducir el problema a una única variable, derivar respecto a esa
variable, igualar a cero y, finalmente, resolver para encontrar la solución óptima.

El procedimiento se resume en los siguientes pasos:

1. Resolver la restricción: Dada la restricción

G(x, y) = C,

se despeja una de las variables. Por ejemplo, si despejamos y obtenemos:

y = g(x).

2. Sustituir en la función objetivo: Se inserta y = g(x) en la función objetivo F (x, y) para obtener
una función de una sola variable:

f(x) = F (x, g(x)).
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3. Derivar e igualar a cero: Se deriva la función f(x) respecto a x y se impone la condición de primer
orden:

df(x)

dx
= 0.

Esta ecuación se resuelve para hallar el valor óptimo x∗.

4. Determinar la otra variable: Finalmente, se sustituye x∗ en la expresión y = g(x) para obtener y∗.

Este método reduce el problema original de dos variables a uno de una sola variable, simplificando el
proceso de optimización.

Ejemplo: Optimización de f(x, y) = x2y sujeta a 5x + 2y = 100
(Método de Sustitución)

Sea la función objetivo
f(x, y) = x2y,

y la restricción
5x+ 2y = 100.

El método de sustitución consiste en despejar una variable de la restricción, insertar esa expresión en la
función objetivo para obtener una función de una sola variable, derivar respecto a dicha variable, igualar a
cero y finalmente despejar.

Paso 1: Resolver la restricción

De la ecuación
5x+ 2y = 100,

despejamos y:

y =
100− 5x

2
.

Paso 2: Sustituir en la función objetivo

Insertamos la expresión de y en f(x, y) = x2y:

f(x) = x2
(
100− 5x

2

)
=

1

2

(
100x2 − 5x3

)
.

Paso 3: Derivar e igualar a cero

Derivamos f(x) respecto a x:

f ′(x) =
1

2

(
200x− 15x2

)
= 100x− 15

2
x2.

Para hallar el óptimo, igualamos la derivada a cero:

100x− 15

2
x2 = 0.

Factorizamos x:

x

(
100− 15

2
x

)
= 0.

https://cabraljuan.github.io


Juan Andrés Cabral

Se obtienen dos soluciones: x = 0 (solución trivial) y

100− 15

2
x = 0 =⇒ x =

200

15
=

40

3
.

Descartamos x = 0 y tomamos x∗ = 40
3 .

Paso 4: Determinar y

Sustituyendo x∗ = 40
3 en la expresión de y:

y∗ =
100− 5

(
40
3

)
2

=
100− 200

3

2
=

300−200
3

2
=

100
3

2
=

50

3
.

Paso 5: Valor óptimo de la función

El valor óptimo de la función es:

f

(
40

3
,
50

3

)
=

(
40

3

)2

· 50
3

=
80000

27
.

Resumen del Método de Sustitución

1. Se despeja una variable de la restricción, en este caso y = 100−5x
2 .

2. Se sustituye en la función objetivo para obtener f(x) = 1
2 (100x

2 − 5x3).

3. Se deriva f(x) respecto a x y se iguala a cero para encontrar el valor óptimo x∗.

4. Se utiliza x∗ en la expresión de y para determinar y∗.

5. Se evalúa la función objetivo en (x∗, y∗) para obtener el valor óptimo.

Ejemplo: Minimización de C = 3x1 + 6x2 + 180 sujeta a x1x2 = 2
(Método de Sustitución)

Se desea minimizar
C = 3x1 + 6x2 + 180,

sujeto a la restricción
x1x2 = 2.

Paso 1: Despejar una variable de la restricción

A partir de la restricción x1x2 = 2, despejamos x2:

x2 =
2

x1
.

Paso 2: Sustituir en la función objetivo

Sustituimos la expresión de x2 en la función objetivo simplificada:

C̃(x1) = 3x1 + 6

(
2

x1

)
+ 180 = 3x1 +

12

x1
+ 180
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Paso 3: Derivar e igualar a cero

Derivamos la función C̃(x1) respecto a x1:

dC̃

dx1
= 3− 12

x21
.

Para hallar el mı́nimo, igualamos la derivada a cero:

3− 12

x21
= 0.

Resolviendo:
12

x21
= 3 =⇒ x21 =

12

3
= 4,

por lo que, considerando x1 > 0,
x∗1 = 2.

Paso 4: Determinar x2 y el costo óptimo

Sustituyendo x1 = 2 en la expresión de x2:

x∗2 =
2

2
= 1.

El costo mı́nimo es, entonces:

Cmin = 3(2) + 6(1) + 180 = 6 + 6 + 180 = 192.

Resumen del Método de Sustitución

1. Se despeja x2 de la restricción x1x2 = 2: x2 = 2
x1
.

2. Se sustituye en la función objetivo simplificada C̃ = 3x1 + 6x2 para obtener

C̃(x1) = 3x1 +
12

x1
.

3. Se deriva respecto a x1 e iguala la derivada a cero para hallar x∗1.

4. Se determina x∗2 usando la expresión de la restricción y se evalúa C.

Soluciones de Esquina

Es importante notar que el método de sustitución (o igualación de derivadas) asume que la solución óptima
es interior, es decir, que la curva de nivel de la función objetivo es tangente a la restricción. Este método no
es aplicable cuando el óptimo se alcanza en una solución de esquina.

Ejemplo breve: Considera la maximización de

f(x, y) = x+ y,
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sujeta a las restricciones {
x+ y ≤ 1,

x ≥ 0, y ≥ 0.

En este problema, el óptimo se alcanza en las esquinas (0, 1) o (1, 0), donde no existe tangencia entre la curva
de nivel y la frontera. Por ello, métodos basados en la igualación de derivadas no seŕıan adecuados en este
caso.

https://cabraljuan.github.io


Juan Andrés Cabral

5 Continuidad

En esta sección vamos a repasar rápidamente los ĺımites y la continuidad en una variable y extenderemos las
ideas al caso de dos variables (o más).

Repaso: ĺımites y continuidad en una variable

Sea f : I ⊆ R → R y a ∈ I.

� Continuidad en a:
f es continua en a ⇐⇒ lim

x→a
f(x) = f(a).

Esta definición engloba 3 condiciones:

� La función existe en el punto a

� El ĺımite de la función existe cuando x→ a

� El valor de la función en el punto y el ĺımite coinciden.

Ejemplos

Sea
f(x) = (x+ 1)2.

Tomemos a = 1. Verificamos continuidad en a con las tres condiciones:

� Existencia de f(1): f(1) = 12 + 2 · 1 + 1 = 4.

� Existencia del ĺımite:
lim
x→1

f(x) = lim
x→1

(x2 + 2x+ 1) = 12 + 2 · 1 + 1 = 4.

� Coincidencia ĺımite–valor: lim
x→1

f(x) = 4 = f(1).

Por lo tanto, f es continua en x = 1 (de hecho, en todo R por ser polinómica).

Veamos otro ejemplo. Definimos

g(x) =


x2 − 1

x− 1
, x ̸= 1,

0, x = 1.

Observemos que para x ̸= 1,
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1,

luego
lim
x→1

g(x) = lim
x→1

(x+ 1) = 2.

Sin embargo, g(1) = 0. Entonces:

� Existe g(1): g(1) = 0.

� Existe el ĺımite: lim
x→1

g(x) = 2.

� No coinciden: 2 ̸= 0.
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Por lo tanto, g es discontinua en x = 1 (discontinuidad evitable, ya que si redefiniéramos g(1) = 2 se
volveŕıa continua).

Veamos un último ejemplo. Sea

f(x) =
1

x− 2
.

Analicemos en a = 2.

� Existencia de f(2): f(2) no está definida (el denominador se anula).

� Comportamiento del ĺımite:

lim
x→2−

1

x− 2
= −∞, lim

x→2+

1

x− 2
= +∞.

Por lo tanto, lim
x→2

f(x) no existe como número finito.

En consecuencia, f presenta una discontinuidad infinita en x = 2 y la recta x = 2 es una aśıntota
vertical.

Ĺımites y continuidad en dos variables

Sea f : D ⊆ R2 → R y a = (a1, a2) ∈ D.

� Continuidad en a:

f es continua en a ⇐⇒ lim
(x,y)→(a1,a2)

f(x, y) = f(a1, a2).

Como en una variable, esta condición resume tres hechos:

� La función está definida en a: f(a1, a2) existe.

� El ĺımite existe al acercarse a a: lim
(x,y)→(a1,a2)

f(x, y) existe (es único).

� Coinciden ĺımite y valor: lim
(x,y)→(a1,a2)

f(x, y) = f(a1, a2).

Ejemplos

Sea
f(x, y) = x2 + 2xy + 3y2.

Verifiquemos primero la continuidad en el punto espećıfico a = (1, 2).

� Existencia de f(a):
f(1, 2) = 12 + 2 · 1 · 2 + 3 · 22 = 1 + 4 + 12 = 17.

� Existencia del ĺımite y coincidencia con el valor: Como f es un polinomio (suma y producto de funciones
continuas),

lim
(x,y)→(1,2)

f(x, y) = f(1, 2) = 17.
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Por lo tanto, f es continua en (1, 2).
Además, como f es polinómica en x y y, es continua en todo R2; es decir, para cualquier a = (a1, a2),

lim
(x,y)→(a1,a2)

f(x, y) = f(a1, a2).

Veamos otro caso, definimos

g(x, y) =

{
1, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

Al acercarse a (0, 0), se tiene lim
(x,y)→(0,0)

g(x, y) = 1, pero g(0, 0) = 0. Por lo tanto, lim
(x,y)→(0,0)

g(x, y) ̸= g(0, 0)

y g es discontinua en (0, 0).
Un último ejemplo. Sea

h(x, y) =


xy

x2 + y2
, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

Cuando tenemos una sola variable independiente, uno puede acercarse al punto por izquierda y por derecha,
pero al trabajar con dos variables independientes uno puede acercarse al punto de diferentes maneras, como
por ejemplo a través de una relación lineal entre x e y. Considerando caminos rectos y = mx.

h(x,mx) =
x (mx)

x2 +m2x2
=

m

1 +m2
,

cuyo ĺımite cuando x → 0 depende de m. Por ejemplo, por y = x el ĺımite vale 1
2 , mientras que por y = −x

vale − 1
2 . Luego lim

(x,y)→(0,0)
h(x, y) no existe y h es discontinua en (0, 0).
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6 Derivadas parciales

Derivada para funciones de una variable

Para funciones de una variable la derivada relaciona el incremento de la función con el incremento de la
variable independiente (cociente incremental) cuando el incremento de x tiende a cero

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

Gráficamente:

0.5 1 1.5 2 2.5 3 3.5 4

2

4

6

(1, 3)

recta tangente

x

f(x)

La función representada es:
f(x) = − (x− 2)2 + 4

En el punto (1, 3), la pendiente de la recta tangente es precisamente la derivada de f respecto a x:

df

dx

∣∣∣∣
x=1

= 2

Como esta pendiente es positiva, la función en ese punto está aumentando.

Derivadas parciales

Para una función de dos variables debemos considerar el incremento de la función z asociada a cambios en
las variables independientes x e y. Para ello, permitimos la variación de una variable manteniendo la otra
constante.

Dada la función z = f(x, y), se define la derivada parcial de f con respecto a x en el punto (x0, y0)
como el valor del siguiente ĺımite, si existe y es finito:

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

Del mismo modo, se define la derivada parcial de f con respecto a y en el punto (x0, y0) como el siguiente
ĺımite, si existe y es finito:

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
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Intuición: Básicamente consideramos un pequeño incremento h (que luego hacemos tender a cero) en una
sola variable —x o y— mientras la otra permanece fija. A ese desplazamiento le restamos el valor original de
la función para medir cuánto ha cambiado f al pasar del punto viejo al nuevo, y dividimos por la distancia
h recorrida. De este modo obtenemos la variación de f por unidad de desplazamiento en esa dirección, que
es precisamente la derivada parcial en ese punto.

Derivadas parciales en Rn

Para generalizar lo anterior podemos pasar a n variables: Sea f : U ⊆ Rn → R y sea a = (a1, . . . , an) ∈ U .
Para cada i = 1, . . . , n, la derivada parcial de f con respecto a la variable xi en el punto a se define como

∂f

∂xi
(a) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an) − f(a1, . . . , an)

h

Ejemplo

Sea la función
f(x, y) = x2y + 3x y2

Por definición

∂f

∂x
(1, 2) = lim

h→0

f(1 + h, 2)− f(1, 2)

h

Calculamos

f(1 + h, 2) = 2(1 + h)2 + 12(1 + h) = 2 + 4h+ 2h2 + 12 + 12h = 14 + 16h+ 2h2 f(1, 2) = 14

Luego
f(1 + h, 2)− f(1, 2)

h
=

16h+ 2h2

h
= 16 + 2h

y al tomar el ĺımite
∂f

∂x

∣∣∣∣
(x,y)=(1,2)

= 16

También es posible aplicar reglas de derivadas como en el caso de funciones de una sola variable. Para
esto las mismas reglas son aplicables teniendo en cuenta que las demás variables se mantienen constantes
cuando derivamos con respecto a una:

Reglas de derivadas más utilizadas

� Regla de la potencia:
d

dx

(
xn
)
= nxn−1

� Derivada de la función logaŕıtmica:

d

dx
(lnx) =

1

x
(x > 0)
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� Derivadas de las funciones trigonométricas:

d

dx
(sinx) = cosx,

d

dx
(cosx) = − sinx

� Derivadas de las funciones exponenciales:

d

dx
(ax) = ax ln a (a > 0, a ̸= 1)

� Regla del producto:
d

dx

(
u(x) v(x)

)
=
du

dx
v(x) + u(x)

dv

dx

� Regla del cociente:
d

dx

(u(x)
v(x)

)
=

du
dx v(x)− u(x) dv

dx

v(x)2

Siguiendo con el ejemplo anterior:

f(x, y) = x2y + 3x y2

Por regla

∂f

∂x
(x, y) = 2x y + 3 y2 =⇒ ∂f

∂x
(1, 2) = 2 · 1 · 2 + 3 · 22 = 16

Otro ejemplo

Sea la función
f(x, y) = x3y2 + 5x y3 − x2y

Por definición

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

f(x+h, y) = (x+h)3y2+5(x+h)y3−(x+h)2y = x3y2+3x2y2h+3xy2h2+y2h3+5xy3+5y3h−x2y−2xyh−yh2

f(x+ h, y)− f(x, y)

h
= 3x2y2 + 3xy2h+ y2h2 + 5y3 − 2xy − yh

h→0−−−→ 3x2y2 + 5y3 − 2xy

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

f(x, y+h) = x3(y+h)2+5x(y+h)3−x2(y+h) = x3y2+2x3yh+x3h2+5xy3+15xy2h+15xyh2+5xh3−x2y−x2h
f(x, y + h)− f(x, y)

h
= 2x3y + x3h+ 15xy2 + 15xyh+ 5xh2 − x2

h→0−−−→ 2x3y + 15xy2 − x2

https://cabraljuan.github.io


Juan Andrés Cabral

Por reglas de derivación

∂f

∂x
(x, y) =

∂

∂x

(
x3y2

)
+

∂

∂x

(
5xy3

)
− ∂

∂x

(
x2y
)
= 3x2y2 + 5y3 − 2x y

∂f

∂x
(x, y) = 3x2y2 + 5y3 − 2xy

∂f

∂y
(x, y) =

∂

∂y

(
x3y2

)
+

∂

∂y

(
5xy3

)
− ∂

∂y

(
x2y
)
= 2x3y + 15x y2 − x2

∂f

∂y
(x, y) = 2x3y + 15xy2 − x2

Las reglas de derivación (regla de potencia, producto, cociente, etc.) se obtienen a partir de la definición
ĺımite de derivada. Sin embargo, cuando la función está definida por tramos, esas reglas pueden no ser
aplicables en los puntos de unión. En dichos casos es necesario calcular la derivada parcial directamente
mediante la definición por ĺımites

Ejemplo con función partida

Sea la función

f(x, y) =


x3

x2 + y2
, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Por definición

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h3

h2 − 0

h
= lim

h→0

h

h
= 1

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0
h2 − 0

h
= lim

h→0

0

h
= 0

Derivadas sucesivas

En una sola variable ya conocemos las derivadas sucesivas:

f ′(x), f ′′(x), f (n)(x)

que se obtienen aplicando la definición de derivada reiteradamente sobre la función resultante.
En varias variables podemos también derivar más de una vez, ya sea respecto a la misma variable o a

variables distintas. Aśı surgen las derivadas parciales de orden dos y superiores, por ejemplo:

∂2f

∂x2
= fxx,

∂2f

∂y∂x
= fxy,

∂2f

∂x∂y
= fyx,

∂2f

∂y2
= fyy

Las derivadas cruzadas fxy y fyx se obtienen derivando primero con respecto a x y luego a y, o viceversa. En
general, las derivadas sucesivas se calculan tomando la derivada parcial de la derivada parcial considerada
como nueva función, es decir, si g(x, y) = ∂f

∂x (x, y), entonces

∂2f

∂y∂x
(x, y) =

∂

∂y

(
g(x, y)

)
y aśı sucesivamente para órdenes mayores.
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Ejemplo

f(x, y) = ex + ey + y sin(x)

Derivadas parciales de primer orden

∂f

∂x
(x, y) =

∂

∂x

(
ex + ey + y sin(x)

)
= ex + y cos(x) =⇒ fx(x, y) = ex + y cos(x)

∂f

∂y
(x, y) =

∂

∂y

(
ex + ey + y sin(x)

)
= ey + sin(x) =⇒ fy(x, y) = ey + sin(x)

Derivadas parciales de segundo orden

∂2f

∂x2
=

∂

∂x

(
ex + y cos(x)

)
= ex − y sin(x) =⇒ fxx(x, y) = ex − y sin(x)

∂2f

∂y∂x
=

∂

∂y

(
ex + y cos(x)

)
= cos(x) =⇒ fxy(x, y) = cos(x)

∂2f

∂x∂y
=

∂

∂x

(
ey + sin(x)

)
= cos(x) =⇒ fyx(x, y) = cos(x)

∂2f

∂y2
=

∂

∂y

(
ey + sin(x)

)
= ey =⇒ fyy(x, y) = ey

Teorema de Schwarz

El teorema de Schwarz garantiza que, cuando las segundas derivadas parciales cruzadas de una función existen
y son continuas, éstas coinciden:

fxixj
= fxjxi

Esto resulta especialmente práctico porque, tras comprobar esta igualdad, basta calcular una sola de las dos
derivadas cruzadas en lugar de ambas, ahorrando tiempo.

Condiciones de aplicabilidad

Supóngase que en un entorno de un punto (x0, y0) se cumplen:

� Existen las derivadas parciales
∂f

∂x
y
∂f

∂y
.

� Existe una de las derivadas parciales cruzadas (por ejemplo
∂2f

∂y ∂x
) y es continua en (x0, y0).

Bajo estas hipótesis, las derivadas parciales cruzadas van a ser iguales.
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Ejemplo

Sea la función
f(x, y) = x2y + e xy

En todo R2 se cumplen las condiciones:

� Existen las derivadas parciales
∂f

∂x
y
∂f

∂y
.

� Existe la derivada parcial cruzada
∂2f

∂y ∂x
y es continua en R2.

Por tanto, en cualquier punto (x, y) vale el teorema de Schwarz.

Cálculo de las derivadas parciales

fx(x, y) =
∂

∂x

(
x2y + exy

)
= 2x y + y exy fy(x, y) =

∂

∂y

(
x2y + exy

)
= x2 + x exy

Derivadas cruzadas

fxy(x, y) =
∂

∂y

(
2x y + y exy

)
= 2x+ exy + x y exy

fyx(x, y) =
∂

∂x

(
x2 + x exy

)
= 2x+ exy + x y exy

fxy(x, y) = fyx(x, y)

https://cabraljuan.github.io


Juan Andrés Cabral

7 Diferencial

Recordatorio: cálculo univariable

Sea f : R → R diferenciable en x0. La aproximación lineal (o linealización) alrededor de x0 es

f(x0 + h) ≈ f(x0) + f ′(x0)h con h = x− x0

El diferencial de f en x0 se define como
df = f ′(x0) dx

Intuición: Al “hacer zoom” sobre la gráfica de f alrededor de x0, la curva se vuelve casi recta: la recta
tangente con pendiente f ′(x0) es la mejor aproximación local de f . Dar un pasito dx en x provoca un cambio
real

∆f = f(x0 + dx)− f(x0)

que es aproximadamente igual al diferencial:

∆f ≈ df = f ′(x0) dx

es decir, pendiente × paso
También se puede ver como

f(x0 + h) = f(x0) + f ′(x0)h+ o(h) cuando h→ 0

donde o(h) denota un término tal que lim
h→0

o(h)

h
= 0; es decir, el error entre la aproximación lineal y el valor

real es despreciable frente a |h| cuando h→ 0

Definición en dos variables independientes

Sea f : R2 → R diferenciable en (a, b). El diferencial de f en (a, b) es

df = fx(a, b) dx + fy(a, b) dy

Equivalente:
f(a+ dx, b+ dy) ≈ f(a, b) + fx(a, b) dx + fy(a, b) dy

Geometŕıa: en dos variables, la aproximación no es una recta sino un plano tangente al gráfico z = f(x, y)
en (a, b):

z ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

Intuición: Lo que buscamos es aproximar el cambio de z a partir de cambios pequeños en x e y. Cada
derivada parcial fx(a, b) y fy(a, b) mide cuán sensible es z a x o a y por separado. Si nos movemos dx en x
y dy en y, el cambio total se aproxima sumando ambos aportes:

∆z ≈ df = fx(a, b) dx + fy(a, b) dy

es decir, “pendiente en x” × “paso en x” + “pendiente en y” × “paso en y”

https://cabraljuan.github.io


Juan Andrés Cabral

Condiciones suficientes

Si fx y fy existen en un entorno de (a, b) y son continuas en (a, b), entonces f es diferenciable en (a, b) y la
aproximación lineal anterior es válida.

Intuición: Exigir que fx y fy sean continuas cerca de (a, b) garantiza que las pendientes en x y en y no
cambien bruscamente. Si las pendientes vaŕıan de forma suave, entonces la superficie de f cerca de (a, b)
se parece mucho a su plano tangente, y la aproximación lineal con el diferencial describe bien los cambios
pequeños en z

Caso general Rn → R
Para f : Rn → R diferenciable en a ∈ Rn,

df =
∂f

∂x1
(a) dx1 +

∂f

∂x2
(a) dx2 + · · · +

∂f

∂xn
(a) dxn

Es decir:

df = ∇f(a) · dx =

n∑
i=1

∂f

∂xi
(a) dxi

y de forma aproximada:
f(a1 + dx1, . . . , an + dxn) ≈ f(a1, . . . , an) + df

Ejemplos

Sea f(x, y) = x2y + exy. Entonces

fx = 2xy + y exy fy = x2 + x exy

En (a, b) = (1, 1),

df =
(
2 · 1 · 1 + 1 · e

)
dx +

(
12 + 1 · e

)
dy = (2 + e) dx+ (1 + e) dy

Para dx = 0.01 y dy = −0.02,

∆f ≈ df = (2 + e)(0.01) + (1 + e)(−0.02) ≈ −0.0272

El resultado negativo indica que, con un incremento pequeño en x y una disminución en y, el valor de la
función f tiende a reducirse levemente. En otras palabras, el efecto de disminuir y en un 0.02 pesa más
que el incremento positivo que produce aumentar x en 0.01, de modo que el cambio neto es una pequeña
disminución en f .

Si calculamos la variación real tenemos lo siguiente:

∆f = f(1.01, 0.98)− f(1, 1) = (1.01)2 · 0.98 + e 0.9898 − (1 + e)

= 3.6903942793− 3.7182818285 = −0.0278875492

Lo cual es similar al resultado anterior pero con diferencias a partir del cuarto decimal.
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Diferencial de segundo orden

Sea f : R2 → R con derivadas parciales primeras y segundas existentes en un entorno de (a, b), y cuyas
segundas derivadas parciales son continuas en ese entorno. Su diferencial de segundo orden en (a, b) es

d2f = fxx(a, b) (dx)
2 + fxy(a, b) dx dy + fyx(a, b) dy dx + fyy(a, b) (dy)

2

El diferencial segundo mide cómo cambia la pendiente cuando ocurre un movimiento nuevo de x e y.
Este diferencial segundo se puede utilizar para generar aproximaciones como el polinomio de Taylor. La
aproximación de Taylor de segundo orden alrededor de (a, b) es

f(a+ dx, b+ dy) ≈ f(a, b) + fx(a, b) dx+ fy(a, b) dy︸ ︷︷ ︸
df

+ 1
2 d2f︸︷︷︸

término cuadrático

.

De esta misma forma podemos seguir añadiendo términos para que la aproximación sea más exacta
(con diferenciales terceros, cuartos, etc.)

Plano tangente

En una variable, al “hacer zoom” en x = a la gráfica se vuelve casi recta y la recta tangente con pendiente
f ′(a) es la mejor aproximación local. En dos variables, el análogo es el plano tangente que pasa por un punto
de la función.

Sea f : R2 → R diferenciable en (a, b). El plano tangente al gráfico z = f(x, y) en (a, b, f(a, b)) es

z = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

Ejemplo Tomemos f(x, y) = ln(x+ y) + x2y (dominio: x+ y > 0). Entonces

fx =
1

x+ y
+ 2xy, fy =

1

x+ y
+ x2.

En (a, b) = (2, 1): f(2, 1) = ln 3 + 4, fx(2, 1) = 1
3 + 4 = 13

3 , fy(2, 1) = 1
3 + 4 = 13

3 . Por lo tanto, el plano
tangente es

z = ln 3 + 4 +
13

3
(x− 2) +

13

3
(y − 1).

Esta función se comporta similar a la función original siempre y cuando nos mantegamos en un entorno
cercano al punto analizado.
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8 Aplicación económica de diferencial

Tasa marginal de sustitución (TMS)

Dada una función de utilidad que depende de las cantidades de dos bienes q1 y q2, llamamos tasa marginal
de sustitución (TMS) a la tasa de compensación entre ellos. Es decir, es la cantidad que se estaŕıa dispuesto
a ceder de uno de los bienes para obtener una unidad adicional del otro, manteniendo constante el nivel de
utilidad.

Calculamos el diferencial de la función de utilidad u(q1, q2):

du =
∂u

∂q1
dq1 +

∂u

∂q2
dq2

Como du = 0 sobre la curva de indiferencia:

∂u

∂q1
dq1 +

∂u

∂q2
dq2 = 0 ⇒ dq2

dq1
= −

∂u
∂q1
∂u
∂q2

Esta pendiente o el módulo de la misma representa lo que se suele llamar tasa marginal de sustitución de
bienes:

TMS =

∣∣∣∣dq2dq1

∣∣∣∣ = ∂u
∂q1
∂u
∂q2

Graficamente

x1

x2

TMS =

∣∣∣∣−u′x1

u′x2

∣∣∣∣
∆x1

∆x2

Ejemplo

Dada la función de utilidad u(q1, q2) = 5q1q2, calcular la TMS en el punto (q1 = 5, q2 = 2).

∂u

∂q1
= 5q2 = 5 · 2 = 10

∂u

∂q2
= 5q1 = 5 · 5 = 25

TMS =
10

25
= 0.4
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Interpretación: Para aumentar una unidad de q1, se deben ceder 0.4 unidades de q2 para mantener
constante el nivel de utilidad

Si se invierte la tasa y se calcula dq1
dq2

, obtenemos:

dq1
dq2

=

∂u
∂q2
∂u
∂q1

=
25

10
= 2.5

Interpretación: Para aumentar una unidad de q2, se deben ceder 2.5 unidades de q1 para mantener
constante el nivel de utilidad

Tasa de sustitución técnica

Dada una función de producción que depende de dos insumos x1 y x2, llamamos tasa marginal de sustitución
técnica (TST) a la tasa a la que una empresa puede sustituir un factor productivo por otro, manteniendo
constante el nivel de producción.

Calculamos el diferencial de la función de producción q(x1, x2):

dq =
∂q

∂x1
dx1 +

∂q

∂x2
dx2

Como dq = 0 sobre la isocuanta:

∂q

∂x1
dx1 +

∂q

∂x2
dx2 = 0 ⇒ dx2

dx1
= −

∂q
∂x1

∂q
∂x2

El módulo de esta pendiente representa la tasa marginal de sustitución técnica:

TST =

∣∣∣∣dx2dx1

∣∣∣∣ = ∂q
∂x1

∂q
∂x2

Ejemplo

Dada la función de producción:
q(a, b) = 20− 7a+ 8b− a2 + b2

calcular la TST en el punto a = 1.2, b = 2.2.

∂q

∂a
= −7− 2a = −7− 2(1.2) = −9.4

∂q

∂b
= 8 + 2b = 8 + 2(2.2) = 12.4

TST =
−9.4

12.4
≈ −0.758

Interpretación: Para aumentar una unidad de a, se deben ceder aproximadamente 0.758 unidades de b
para mantener constante el nivel de producción

Si se invierte la tasa y se calcula dx1

dx2
, obtenemos:

dx1
dx2

=
∂q
∂b
∂q
∂a

=
12.4

−9.4
≈ −1.319

Interpretación: Para aumentar una unidad de b, se deben ceder aproximadamente 1.319 unidades de a
para mantener constante el nivel de producción
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Notación

En muchos textos se utiliza una notación abreviada del tipo TMS(x1/x2) para referirse a las tasas marginales
de sustitución.

TMS(x1/x2) representa la tasa marginal de sustitución donde el numerador es la derivada respecto de
x2 y el denominador la derivada respecto de x1, es decir:

TMS(x1/x2) =
dx2
dx1

=
∂u
∂x1

∂u
∂x2

Interpretación: indica cuántas unidades de x2 deben cederse para obtener una unidad adicional de x1,
manteniendo constante el nivel de utilidad

De manera inversa, TMS(x2/x1) representa la tasa marginal de sustitución donde el numerador es la
derivada respecto de x1 y el denominador la derivada respecto de x2, es decir:

TMS(x2/x1) =
dx1
dx2

=
∂u
∂x2

∂u
∂x1

Interpretación: indica cuántas unidades de x1 deben cederse para obtener una unidad adicional de x2,
manteniendo constante el nivel de utilidad

Interpretación intuitiva

Cuando aparece una expresión como

dx2
dx1

=
∂u
∂x1

∂u
∂x2

se interpreta como: “cuánto debe reducirse x2 para aumentar en una unidad x1, manteniendo constante
la utilidad”.

Una forma intuitiva de pensarlo es:

� El numerador es lo que se entrega o se cede

� El denominador es lo que se desea obtener
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9 Clasificación de bienes y elasticidad

Conceptos clave

� Funciones de demanda: Representan la relación entre la cantidad demandada de un bien y variables
como su precio propio, el precio de bienes relacionados y el ingreso del consumidor

� Derivadas parciales: Permiten analizar el efecto marginal de un cambio en una variable (precio o
ingreso) sobre la cantidad demandada, manteniendo constantes las demás

� Elasticidad: Es la medida de sensibilidad de la cantidad demandada ante cambios porcentuales en el
precio o ingreso, ayudando a clasificar el bien según su comportamiento

Clasificación de bienes

1. Según el precio propio

� Bienes t́ıpicos: Al aumentar el precio del bien, la cantidad demandada disminuye. La mayoŕıa de
bienes se comporta aśı:

∂Q

∂P
< 0

� Bienes Giffen: En situaciones excepcionales, el aumento en el precio del bien provoca un aumento
en su demanda, debido al efecto ingreso que supera al efecto sustitución. No confundir con los bienes
Veblen, que son bienes de lujo demandados por sus caracteŕısticas de señalizar estatus económico

∂Q

∂P
> 0

Intuición: En condiciones normales, la relación inversa (mayor precio, menor demanda) es esperada;
los bienes Giffen representan casos raros donde, por limitaciones presupuestarias, el aumento de precio lleva
a consumir más del bien

2. Según el precio del otro bien

� Bienes sustitutos: Si al aumentar el precio de un bien la demanda del otro aumenta, se considera
que los bienes son sustitutos. Esto ocurre cuando el consumidor opta por el bien relativamente más
económico. Por ejemplo, marcas rivales: Coca Cola y Pepsi

∂Q1

∂P2
> 0

� Bienes complementarios: Si el aumento en el precio de un bien reduce la demanda del otro, se
clasifican como complementarios, ya que se consumen en conjunto. Por ejemplo, café y azúcar

∂Q1

∂P2
< 0

Intuición: La existencia de bienes sustitutos permite al consumidor cambiar de producto al encarecerse
uno, mientras que los bienes complementarios se consumen conjuntamente para satisfacer una necesidad
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3. Según el ingreso

� Bienes normales: La demanda aumenta al incrementar el ingreso del consumidor, la mayoŕıa de
bienes tienden a ser normales

∂Q

∂I
> 0

� Bienes inferiores: La demanda disminuye cuando aumenta el ingreso, ya que los consumidores optan
por bienes de mayor calidad. Por ejemplo, marcas de segunda ĺınea

∂Q

∂I
< 0

Intuición: La clasificación según el ingreso refleja la capacidad del consumidor para ajustar sus hábitos
de consumo en función de su poder adquisitivo

Elasticidad de la demanda

La elasticidad cuantifica la sensibilidad de la cantidad demandada ante cambios en precios o ingresos

Elasticidad precio e ingreso

Elasticidad precio =
∆Q/Q

∆P/P
=
P

Q

∂Q

∂P

� Interpretación (en términos absolutos):

– Si ∣∣∣∣PQ ∂Q

∂P

∣∣∣∣ > 1

la demanda es elástica (sensible a cambios en el precio)

– Si ∣∣∣∣PQ ∂Q

∂P

∣∣∣∣ < 1

la demanda es inelástica (poco sensible)

– Si ∣∣∣∣PQ ∂Q

∂P

∣∣∣∣ = 1

la elasticidad es unitaria (la demanda se mueve exactamente en la misma proporción que el
precio)

– Si
∂Q

∂P
= 0 (lo que implica que

∣∣∣∣PQ ∂Q

∂P

∣∣∣∣ = 0)

la demanda es perfectamente inelástica (la cantidad demandada permanece constante sin im-
portar cambios en el precio)

� Aunque se presenta el concepto como elasticidad precio, esta noción se extiende a la elasticidad
ingreso y a cualquier otra función que admita derivadas parciales. Por ejemplo, la elasticidad ingreso
se define como:

Elasticidad ingreso =
∆Q/Q

∆I/I
=

I

Q

∂Q

∂I

donde I representa el ingreso
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Bienes de lujo vs. bienes esenciales

La clasificación de bienes en términos de lujo o esencial se basa en la elasticidad ingreso, la cual mide la
sensibilidad de la cantidad demandada ante cambios en el ingreso del consumidor. Es importante resaltar
que esta clasificación se aplica únicamente a bienes normales

Bienes esenciales (necesidades básicas)

Para los bienes esenciales, la elasticidad ingreso se encuentra en el rango:

0 < EI < 1

donde

EI =
I

Q

∂Q

∂I

Esto significa que, ante un aumento porcentual en el ingreso, la cantidad demandada del bien aumenta en una
proporción menor. Dichos bienes satisfacen necesidades básicas y su consumo tiende a estabilizarse incluso
cuando el ingreso crece

Bienes de lujo

En cambio, los bienes de lujo se caracterizan por tener:

EI > 1

Esto implica que un incremento porcentual en el ingreso genera un aumento porcentual mayor en la demanda
del bien. Estos bienes son adquiridos en mayor medida cuando los consumidores disponen de mayores recursos,
reflejando un comportamiento de consumo más discrecional

Ejemplos:

� Bienes esenciales: Alimentos básicos (por ejemplo, pan y arroz), medicamentos genéricos, vivienda

� Bienes de lujo: Ropa de diseñador, automóviles de alta gama, joyeŕıa fina

Ejemplo

Supongamos que la función de demanda de un bien se expresa como:

Q(P, I) = 200 + 0.3I − 4P

donde P es el precio del bien e I es el ingreso del consumidor
Cálculo de las derivadas parciales:

∂Q

∂P
= −4,

∂Q

∂I
= 0.3

El signo negativo en ∂Q
∂P indica que, al aumentar el precio, la cantidad demandada disminuye (bien t́ıpico).

El signo positivo en ∂Q
∂I muestra que, al aumentar el ingreso, la demanda crece, lo que caracteriza al bien

como normal
Evaluación en un punto espećıfico:

Sea P = 15 e I = 500. Entonces:

Q(15, 500) = 200 + 0.3× 500− 4× 15 = 200 + 150− 60 = 290
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Cálculo de la elasticidad precio:
La elasticidad precio se define como:

EP =
P

Q

∂Q

∂P

Sustituyendo los valores:

EP =
15

290
× (−4) ≈ −0.207

En valor absoluto, |EP | ≈ 0.207, lo que indica que la demanda es inelástica (poco sensible a cambios en el
precio)

Cálculo de la elasticidad ingreso:

EI =
I

Q

∂Q

∂I

Sustituyendo los valores:

EI =
500

290
× 0.3 ≈ 0.517

Esto significa que, ante un aumento del 1% en el ingreso, la cantidad demandada incrementa aproximadamente
en un 0.517%, también es inelástica respecto al ingreso

Interpretación respecto a bienes de lujo vs. esenciales:
Dado que 0 < EI < 1, el bien se clasifica como un bien esencial (o necesidad básica), ya que la respuesta
de la demanda a cambios en el ingreso es relativamente baja
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10 Derivadas compuestas

En matemática aplicada a la economı́a es muy común que una variable dependa de otra a través de funciones
intermedias. Por ejemplo, la cantidad demandada Q depende del precio P v́ıa Q = D(P ), y el precio a su
vez depende de un impuesto ad-valorem τ v́ıa P = P0(1 + τ). Esta composición se modela como

y = g
(
h(x)

)
donde g y h son funciones diferenciables. Una pregunta que puede surgir es ¿Cómo afecta el cambio en el
impuesto a la demanda? La respuesta de esta pregunta se puede encontrar a través de la derivada de una
función compuesta.

En una variable

Recordemos que si y = f(x) y x cambia de a a a+∆x, definimos el incremento de y como

∆y = f(a+∆x)− f(a)

De acuerdo con la definición de derivada,

lim
∆x→0

∆y

∆x
= f ′(a)

Si denotamos por ε la diferencia entre el cociente incremental y la derivada, obtenemos

lim
∆x→0

ε = lim
∆x→0

(
∆y

∆x
− f ′(a)

)
= f ′(a)− f ′(a) = 0

Pero

ε =
∆y

∆x
− f ′(a) =⇒ ∆y = f ′(a)∆x + ε∆x

Definimos ε = 0 cuando ∆x = 0.

Aśı, para una función f diferenciable, podemos escribir

∆y = f ′(a)∆x + ε∆x, ε→ 0 cuando ∆x→ 0 (5)

y ε es función continua de ∆x. Esta propiedad habilita la prueba de la regla de la cadena.

Prueba de la regla de la cadena

Supongamos u = g(x) diferenciable en a y y = f(u) diferenciable en b = g(a). Si ∆x es un incremento en x
y ∆u,∆y los incrementos correspondientes en u e y, entonces, aplicando (5) a g en a,

∆u = g′(a)∆x + ε1 ∆x =
[
g′(a) + ε1

]
∆x, ε1 → 0 cuando ∆x→ 0 (6)

De modo análogo, aplicando (5) a f en b,

∆y = f ′(b)∆u + ε2 ∆u =
[
f ′(b) + ε2

]
∆u ε2 → 0 cuando ∆u→ 0 (7)

Sustituyendo ∆u de (6) en (7), obtenemos

∆y =
[
f ′(b) + ε2

][
g′(a) + ε1

]
∆x, por lo tanto

∆y

∆x
=
[
f ′(b) + ε2

][
g′(a) + ε1

]
Cuando ∆x→ 0, la ecuación (6) muestra que ∆u→ 0; aśı, ε1 → 0 y ε2 → 0. Luego

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

[
f ′(b) + ε2

][
g′(a) + ε1

]
= f ′(b) g′(a) = f ′

(
g(a)

)
g′(a)

https://cabraljuan.github.io


Juan Andrés Cabral

Ejemplo

Función: y(x) = ( 1 + 2x )5.
Identificación de la composición:

g(u) = u5, h(x) = 1 + 2x, y(x) = g
(
h(x)

)
Derivadas de cada capa:

g′(u) = 5u4, h′(x) = 2

Aplicación de la regla de la cadena:

y′(x) = g′
(
h(x)

)
· h′(x) = 5

(
1 + 2x

)4 · 2 = 10
(
1 + 2x

)4

Regla de la cadena (caso multivariable)

Un cambio ∆t produce cambios ∆x = g(t0 +∆t)− g(t0) y ∆y = h(t0 +∆t)− h(t0). Por diferenciabilidad de
f en (x0, y0),

∆z = f(x0 +∆x, y0 +∆y)− f(x0, y0) =
∂f

∂x
(x0, y0)∆x+

∂f

∂y
(x0, y0)∆y + ε1(∆x,∆y)∆x+ ε2(∆x,∆y)∆y,

donde ε1(∆x,∆y) → 0 y ε2(∆x,∆y) → 0 cuando (∆x,∆y) → (0, 0) (si (∆x,∆y) = (0, 0), definimos ε1 =
ε2 = 0).

Dividiendo por ∆t,

∆z

∆t
=
∂f

∂x
(x0, y0)

∆x

∆t
+
∂f

∂y
(x0, y0)

∆y

∆t
+ ε1(∆x,∆y)

∆x

∆t
+ ε2(∆x,∆y)

∆y

∆t
.

Como g, h son derivables en t0, se tiene ∆x/∆t → g′(t0) y ∆y/∆t → h′(t0); además ∆t → 0 ⇒
(∆x,∆y) → (0, 0), luego ε1, ε2 → 0. Por lo tanto,

dz

dt

∣∣∣
t0

= lim
∆t→0

∆z

∆t

=
∂f

∂x
(x0, y0) lim

∆t→0

∆x

∆t
+
∂f

∂y
(x0, y0) lim

∆t→0

∆y

∆t
+ lim

∆t→0
ε1(∆x,∆y)︸ ︷︷ ︸

0

lim
∆t→0

∆x

∆t︸ ︷︷ ︸
g′(t0)

+ lim
∆t→0

ε2(∆x,∆y)︸ ︷︷ ︸
0

lim
∆t→0

∆y

∆t︸ ︷︷ ︸
h′(t0)

=
∂f

∂x
(x0, y0) g

′(t0) +
∂f

∂y
(x0, y0)h

′(t0).

Forma compacta. Usando ∂z/∂x = ∂f/∂x y ∂z/∂y = ∂f/∂y, la regla queda

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Un ejemplo más complejo

Supongamos funciones diferenciables

z = f(x, y), x = x(u, v), y = y(u, v)

Ahora podemos encontrar dos derivadas z′u y z′v, las cuales se calculan con la misma regla que antes

zu = fx xu + fy yu, zv = fx xv + fy yv
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Cuando hay más dependencias de variables

En muchos problemas hay más dependencias entre variables. El esquema general es:

z = g(u1, . . . , um), ui = ui(x1, . . . , xn)

Aqúı g es diferenciable en Rm y cada ui es diferenciable en Rn.
Para cada variable básica xj (j = 1, . . . , n):

∂z

∂xj
=

m∑
i=1

∂g

∂ui

∂ui
∂xj

Dependencias encadenadas

Cuando hay varias capas, se suman los productos de derivadas a lo largo de cada camino.

y = y(u, v), u = u(p, q), v = v(q, s), p = p(t), q = q(t), s = s(t)

Entonces
dy

dt
= yu(up p

′ + uq q
′) + yv(vq q

′ + vs s
′)

Ejemplos

z = f(x, y) = x2y, x = g(t) = t2, y = h(t) = et

Derivadas

fx = 2xy, fy = x2,
dx

dt
= 2t,

dy

dt
= et

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= (2xy)(2t) + (x2)(et)

Sustituyendo x = t2 y y = et:

dz

dt
= 2(t2)(et)(2t) + (t2)2et = 4t3et + t4et = et

(
4t3 + t4

)
Comprobación directa. Como z(t) = x(t)2y(t) = (t2)2et = t4et

d

dt

(
t4et

)
= 4t3et + t4et = et(4t3 + t4)

que coincide con el resultado obtenido por la regla de la cadena.

Otro caso

z = f(x, y) = x y2, x = x(v, w) = v + w, y = y(v, w) = v − w

Derivadas parciales y derivadas de las dependencias:

fx = y2, fy = 2xy, xv = 1, xw = 1, yv = 1, yw = −1

Regla de la cadena:

zv = fx xv + fy yv, zw = fx xw + fy yw
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Cálculo:

zv = y2 · 1 + (2xy) · 1 = y2 + 2xy, zw = y2 · 1 + (2xy) · (−1) = y2 − 2xy

Sustituyendo x = v + w, y = v − w:

zv = (v − w)2 + 2(v + w)(v − w) = (v − w)
[
(v − w) + 2(v + w)

]
= (v − w)(3v + w)

zw = (v − w)2 − 2(v + w)(v − w) = (v − w)
[
(v − w)− 2(v + w)

]
= (v − w)(−v − 3w)

Comprobación directa. Como z(v, w) = x y2 = (v + w)(v − w)2

∂z

∂v
= (v − w)2 + 2(v + w)(v − w) = (v − w)(3v + w)

∂z

∂w
= (v − w)2 − 2(v + w)(v − w) = (v − w)(−v − 3w)

coincidiendo con la regla de la cadena.
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11 Derivadas impĺıcitas

Derivación impĺıcita: deducción de la fórmula y requerimientos

En muchos casos en matemáticas y economı́a, las relaciones entre variables se presentan de forma impĺıcita,
es decir, mediante una ecuación de la forma

F (x, y) = 0

donde y se define como función de x de forma impĺıcita (i.e., y = f(x)). Para poder aplicar la derivación
impĺıcita, es fundamental cumplir con ciertos requerimientos y condiciones.

Requerimientos para la aplicación de la derivación impĺıcita

1. Verificación de la solución: se asume que el punto de interés (x0, y0) satisface la ecuación, es decir,
F (x0, y0) = 0 (esto implica que y0 = f(x0))

2. Diferenciabilidad de F (x, y): la función F debe ser diferenciable en un entorno del punto de interés
(x0, y0). Esto garantiza que existen las derivadas parciales Fx y Fy

3. No nulidad de la derivada parcial respecto a y: se requiere que Fy(x0, y0) ̸= 0. Esta condición es
esencial para aplicar el Teorema de la Función Impĺıcita, el cual asegura que en un entorno de (x0, y0)
se puede expresar y como una función diferenciable de x (i.e., y = f(x))

Deducción de la fórmula de la derivada impĺıcita

Consideremos la ecuación
F (x, y) = 0

donde suponemos que y = f(x) y F es diferenciable en un entorno de (x0, y0). Como F (x, f(x)) = 0 para
todos los x en dicho entorno, derivamos ambos lados de la igualdad con respecto a x, aplicando la regla de
la cadena:

d

dx
F (x, f(x)) = Fx(x, f(x)) + Fy(x, f(x)) · f ′(x) = 0

Aqúı, Fx y Fy representan las derivadas parciales de F con respecto a x y y, respectivamente. Despe-
jamos f ′(x) de la siguiente forma:

Fy(x, f(x)) · f ′(x) = −Fx(x, f(x))

=⇒ f ′(x) = −Fx(x, f(x))

Fy(x, f(x))

Esta es la fórmula general para la derivada de una función definida de forma impĺıcita.

Ejemplo

Consideremos la ecuación de la circunferencia:

x2 + y2 = 25

Definimos la función F (x, y) como:

F (x, y) = x2 + y2 − 25 = 0

Observamos que para cualquier punto (x, y) sobre la circunferencia se cumple F (x, y) = 0
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Paso 1: calcular las derivadas parciales Se tiene:

Fx(x, y) = 2x y Fy(x, y) = 2y

Paso 2: aplicar la fórmula de la derivada impĺıcita Utilizando la fórmula:

dy

dx
= −Fx(x, y)

Fy(x, y)
= −2x

2y

=⇒ dy

dx
= −x

y

Derivación impĺıcita: función de dos variables independientes

En algunos problemas en matemáticas y economı́a, las relaciones entre variables se presentan de forma
impĺıcita mediante una ecuación de la forma

F (x, y, z) = 0

donde z se define impĺıcitamente como función de x e y (i.e., z = f(x, y)). Para aplicar la derivación impĺıcita
en este contexto, es fundamental cumplir con ciertos requerimientos y condiciones.

Requerimientos para la aplicación de la derivación impĺıcita

1. Verificación de la solución: se asume que el punto de interés Q0 = (x0, y0, z0) satisface la ecuación, es
decir, F (x0, y0, z0) = 0 (lo que implica que z0 = f(x0, y0))

2. Diferenciabilidad de F (x, y, z): la función F y sus derivadas parciales Fx, Fy y Fz deben existir y ser
continuas en un entorno del punto Q0

3. No nulidad de la derivada parcial respecto a z: se requiere que Fz(x0, y0, z0) ̸= 0. Esta condición es
esencial para poder expresar z como una función diferenciable de x e y en el entorno de Q0

Deducción de las fórmulas de las derivadas parciales

Consideremos la ecuación
F (x, y, z) = 0

donde suponemos que z = f(x, y) y F es diferenciable en un entorno del punto Q0 = (x0, y0, z0). Como
F (x, y, f(x, y)) = 0 para todos los (x, y) en dicho entorno, derivamos ambos lados de la igualdad con respecto
a x e y, aplicando la regla de la cadena.

Aplicación de la regla de la cadena

Para clarificar la deducción, se puede reescribir la función F (x, y, z) definiendo u = x, v = y y z = f(x, y),
de forma que

w = F (u, v, z) = 0

Aplicando la regla de la cadena respecto a x:

∂w

∂x
=
∂F

∂u
· ∂u
∂x

+
∂F

∂v
· ∂v
∂x

+
∂F

∂z
· ∂z
∂x

= 0
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Como ∂u
∂x = 1 y ∂v

∂x = 0, se obtiene:

∂F

∂x
+
∂F

∂z
· ∂z
∂x

= 0 =⇒ ∂z

∂x
= −Fx

Fz

El mismo procedimiento se aplica para obtener ∂z
∂y

Estas fórmulas permiten calcular las derivadas parciales de z = f(x, y) de forma impĺıcita, siempre y
cuando se cumplan los requerimientos indicados.

Ejemplo

Consideremos la función:
F (x, y, z) = x2y + sin(z)− z cos(y) + z2 − 1 = 0

Observamos que para cualquier punto (x, y, z) que satisface esta ecuación se define impĺıcitamente z
como función de x e y (i.e., z = f(x, y))

Paso 1: calcular las derivadas parciales Se tiene:

Fx(x, y, z) = 2xy

Fy(x, y, z) = x2 + z sin(y)

Fz(x, y, z) = cos(z)− cos(y) + 2z

Paso 2: aplicar la fórmula de la derivada impĺıcita Las fórmulas para las derivadas parciales de
z = f(x, y) son:

∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)
y

∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)

Paso 3: evaluar en un punto Elijamos el punto Q0 = (1, 1, 0). Verificamos que:

12 · 1 + sin(0)− 0 · cos(1) + 02 − 1 = 1− 1 = 0

por lo que Q0 pertenece a la superficie definida por F (x, y, z) = 0
Evaluamos las derivadas parciales en Q0:

Fx(1, 1, 0) = 2 · 1 · 1 = 2

Fy(1, 1, 0) = 12 + 0 · sin(1) = 1

Fz(1, 1, 0) = cos(0)− cos(1) + 2 · 0 = 1− cos(1) ≈ 0.46

Por lo tanto:
∂z

∂x

∣∣∣
(1,1,0)

= − 2

1− cos(1)
≈ −4.35

∂z

∂y

∣∣∣
(1,1,0)

= − 1

1− cos(1)
≈ −2.17
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Derivadas impĺıcitas sucesivas

Consideremos la función impĺıcita:

F (x, y, z) = 2 sin(z)− xz + y3 − 1 = 0

que define a z = z(x, y). Se desea calcular las derivadas de segundo orden:

zxx, zxy, zyx, zyy

evaluadas en el punto Q0 = (1, 1, 0)

Paso 1: derivadas de primer orden

Dado que F (x, y, z(x, y)) = 0, diferenciamos impĺıcitamente respecto de x:

Fx + Fz · zx = 0 ⇒ zx = −Fx

Fz

Análogamente, derivando respecto de y:

Fy + Fz · zy = 0 ⇒ zy = −Fy

Fz

Calculamos ahora las derivadas parciales necesarias:

Fx =
∂F

∂x
= −z, Fy =

∂F

∂y
= 3y2, Fz =

∂F

∂z
= 2 cos(z)− x

Entonces:

zx =
z

2 cos(z)− x
, zy = − 3y2

2 cos(z)− x

A partir de estas expresiones, aplicamos la regla del cociente para obtener las segundas derivadas sin
evaluar numéricamente hasta el final.

Cálculo de zxx

Derivamos zx = z
2 cos(z)−x respecto a x:

zxx =
d

dx

(
z

2 cos(z)− x

)
=

dz
dx (2 cos(z)− x)− z d(2 cos(z)−x)

dx

(2 cos(z)− x)2

d(2 cos(z)− x)

dx
= −2 sin(z)

dz

dx
− 1 = −2 sin(z) zx − 1

Sustituyendo:

zxx =
(zx)(2 cos(z)− x)− z(−2 sin(z)zx − 1)

(2 cos(z)− x)2

zxx =
zx(2 cos(z)− x) + z(2 sin(z)zx + 1)

(2 cos(z)− x)2

Evaluando en Q0 = (1, 1, 0) (con z = 0, zx = 0, sin(0) = 0, cos(0) = 1, x = 1):

zxx(1, 1) =
(0)(2(1)− 1) + 0(2(0)(0) + 1)

(2(1)− 1)2
=

0 + 0

12
= 0
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Cálculo de zxy

Derivamos zx = z
2 cos(z)−x respecto a y:

zxy =
d

dy

(
z

2 cos(z)− x

)
=

dz
dy (2 cos(z)− x)− z d(2 cos(z)−x)

dy

(2 cos(z)− x)2

Calculamos las derivadas necesarias para el numerador:

d(2 cos(z)− x)

dy
= −2 sin(z)

dz

dy
− 0 = −2 sin(z)zy

Sustituyendo:

zxy =
(zy)(2 cos(z)− x)− z(−2 sin(z)zy)

(2 cos(z)− x)2

zxy =
zy(2 cos(z)− x) + 2z sin(z)zy

(2 cos(z)− x)2

Evaluando en Q0 = (1, 1, 0) (con z = 0, zy = −3, sin(0) = 0, cos(0) = 1, x = 1):

zxy(1, 1) =
(−3)(2(1)− 1) + 2(0)(0)(−3)

(2(1)− 1)2
=

(−3)(1) + 0

12
= −3

Por simetŕıa de las derivadas cruzadas (asumiendo que se cumple el teorema de Schwarz):

zyx = zxy

Cálculo de zyy

Derivamos zy = − 3y2

2 cos(z)−x respecto a y:

zyy =
d

dy

(
− 3y2

2 cos(z)− x

)
= −

d(3y2)
dy (2 cos(z)− x)− (3y2)d(2 cos(z)−x)

dy

(2 cos(z)− x)2

Calculamos las derivadas necesarias para el numerador:

d(3y2)

dy
= 6y

d(2 cos(z)− x)

dy
= −2 sin(z)zy (calculado antes)

Sustituyendo:

zyy = − (6y)(2 cos(z)− x)− (3y2)(−2 sin(z)zy)

(2 cos(z)− x)2

zyy = −6y(2 cos(z)− x) + 6y2 sin(z)zy
(2 cos(z)− x)2

Evaluando en Q0 = (1, 1, 0) (con y = 1, z = 0, zy = −3, sin(0) = 0, cos(0) = 1, x = 1):

zyy(1, 1) = −6(1)(2(1)− 1) + 6(1)2(0)(−3)

(2(1)− 1)2
= −6(1) + 0

12
= −6
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12 Derivadas impĺıcitas en sistemas de ecuaciones

Derivación Impĺıcita en Sistemas de Ecuaciones con una variable
independiente

Aśı como una superficie puede estar definida en forma impĺıcita por una ecuación, una curva en el espacio
puede estar definida impĺıcitamente por un sistema de dos ecuaciones{

F (x, y, z) = 0

G(x, y, z) = 0

Por ejemplo, puede ocurrir que el sistema defina impĺıcitamente a y = f(x) y z = g(x) es decir, que
ambas dependan de una única variable independiente. En ese caso, se dice que el sistema define a dos de las
tres variables como funciones de la restante

Requerimientos para Aplicar la Derivación Impĺıcita

Para que sea posible derivar y y z respecto a x se deben cumplir las siguientes condiciones

1. Verificación de la solución: El punto de interés (x0, y0, z0) debe satisfacer ambas ecuaciones es decir

F (x0, y0, z0) = 0 y G(x0, y0, z0) = 0

2. Diferenciabilidad de F y G: Ambas funciones deben ser diferenciables en un entorno del punto, con
derivadas parciales continuas

3. No anulación del Jacobiano respecto a y y z: El determinante

J =
∂(F,G)

∂(y, z)
=

∣∣∣∣Fy Fz

Gy Gz

∣∣∣∣ ̸= 0

debe ser distinto de cero para que el sistema tenga solución única para dy
dx y dz

dx

Deducción de las Fórmulas de Derivadas

Partimos de las ecuaciones impĺıcitas

F (x, y, z) = 0, G(x, y, z) = 0

Por la definición de la derivada y la regla de la cadena, al derivar la igualdad respecto a x obtenemos

d

dx
F
(
x, y(x), z(x)

)
=
∂F

∂x
(x, y, z) +

∂F

∂y
(x, y, z)

dy

dx
+
∂F

∂z
(x, y, z)

dz

dx
= 0

Notamos que en este proceso se entiende que la derivada de x respecto a śı mismo es 1 Aśı, se llega directamente
a

Fx(x, y, z) + Fy(x, y, z)
dy

dx
+ Fz(x, y, z)

dz

dx
= 0

De manera similar, si además se tiene otra función G(x, y, z) = 0 (con y y z también funciones de x)
aplicamos la regla de la cadena para obtener

Gx(x, y, z) +Gy(x, y, z)
dy

dx
+Gz(x, y, z)

dz

dx
= 0
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Por lo tanto tenemos el siguiente sistema{
Fx + Fy

dy
dx + Fz

dz
dx = 0

Gx +Gy
dy
dx +Gz

dz
dx = 0{

Fy
dy
dx + Fz

dz
dx = −Fx

Gy
dy
dx +Gz

dz
dx = −Gx

Escribimos el sistema en forma matricial(
Fy Fz

Gy Gz

)(
dy
dx
dz
dx

)
= −

(
Fx

Gx

)

Resolución con Regla de Cramer

Este sistema lineal en las incógnitas dy
dx y dz

dx se resuelve usando determinantes

dy

dx
=

∣∣∣∣−Fx Fz

−Gx Gz

∣∣∣∣
J

y
dz

dx
=

∣∣∣∣Fy −Fx

Gy −Gx

∣∣∣∣
J

También puede escribirse de forma compacta como cocientes de derivadas parciales mixtas

dy

dx
= −∂(F,G)/∂(x, z)

∂(F,G)/∂(y, z)
y

dz

dx
= −∂(F,G)/∂(y, x)

∂(F,G)/∂(y, z)

Ejemplo

Consideremos el sistema de ecuaciones {
xy + z = 2

x− y + z2 = 0

que define impĺıcitamente a y y z como funciones de x (i.e., y = y(x) y z = z(x)). Para aplicar la derivación
impĺıcita, definimos

F (x, y, z) = xy + z − 2 = 0 G(x, y, z) = x− y + z2 = 0

Paso 1: Calcular las derivadas parciales Para F (x, y, z)

Fx = y, Fy = x, Fz = 1

Para G(x, y, z)
Gx = 1, Gy = −1, Gz = 2z

Paso 2: Diferenciar impĺıcitamente y escribir el sistema Aplicando la regla de la cadena, tenemos

Fx + Fy
dy

dx
+ Fz

dz

dx
= 0 =⇒ y + x

dy

dx
+
dz

dx
= 0

Gx +Gy
dy

dx
+Gz

dz

dx
= 0 =⇒ 1− dy

dx
+ 2z

dz

dx
= 0

Reorganizando, obtenemos {
x dy

dx + dz
dx = −y

− dy
dx + 2z dz

dx = −1
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Paso 3: Escribir el sistema en forma matricial El sistema se puede expresar de la siguiente manera(
Fy Fz

Gy Gz

)(
dy
dx
dz
dx

)
= −

(
Fx

Gx

)
es decir, (

x 1
−1 2z

)(
dy
dx
dz
dx

)
= −

(
y
1

)

Paso 4: Resolver el sistema con la Regla de Cramer El determinante del sistema (Jacobiano) es

J =

∣∣∣∣ x 1
−1 2z

∣∣∣∣ = 2xz + 1

Luego, aplicando la regla de Cramer, se tiene

Para
dy

dx

dy

dx
=

∣∣∣∣−y 1
−1 2z

∣∣∣∣
J

=
(−y)(2z)− (1)(−1)

2xz + 1
=

−2yz + 1

2xz + 1

Para
dz

dx

dz

dx
=

∣∣∣∣ x −y
−1 −1

∣∣∣∣
J

=
x(−1)− (−y)(−1)

2xz + 1
=

−x− y

2xz + 1

Derivación Impĺıcita en Sistemas de Ecuaciones (2 Variables Inde-
pendientes)

Planteamos la situación en la que dos ecuaciones

F (x, y, u, v) = 0 y G(x, y, u, v) = 0

definen impĺıcitamente dos funciones de dos variables independientes

u = h(x, y) y v = m(x, y)

Deducción de las Fórmulas de las Derivadas Parciales

Partimos de las ecuaciones impĺıcitas

F (x, y, u, v) = 0 y G(x, y, u, v) = 0

Para obtener las derivadas parciales de u y v respecto de x (manteniendo y constante) procedemos de
la siguiente manera

(1) Derivadas parciales respecto a x:
Consideramos u = u(x, y) y v = v(x, y). Entonces, aplicando la regla de la cadena a F (x, y, u, v) = 0 se

tiene
d

dx
F
(
x, y, u(x, y), v(x, y)

)
=
∂F

∂x
+
∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x
= 0

Aqúı se entiende que, al derivar con respecto a x, la variable y se considera constante
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De manera similar, al derivar G(x, y, u, v) = 0 respecto a x se obtiene

d

dx
G
(
x, y, u(x, y), v(x, y)

)
=
∂G

∂x
+
∂G

∂u

∂u

∂x
+
∂G

∂v

∂v

∂x
= 0

Podemos escribir el sistema resultante como{
Fx(x, y, u, v) + Fu(x, y, u, v)

∂u
∂x + Fv(x, y, u, v)

∂v
∂x = 0

Gx(x, y, u, v) +Gu(x, y, u, v)
∂u
∂x +Gv(x, y, u, v)

∂v
∂x = 0

Reorganizando para aislar las derivadas parciales de u y v se tiene{
Fu

∂u
∂x + Fv

∂v
∂x = −Fx

Gu
∂u
∂x +Gv

∂v
∂x = −Gx

Este sistema se puede escribir en forma matricial(
Fu Fv

Gu Gv

)(
∂u
∂x
∂v
∂x

)
= −

(
Fx

Gx

)

(2) Derivadas parciales respecto a y:
Ahora, derivamos con respecto a y (manteniendo x constante). Aplicando la regla de la cadena a

F (x, y, u, v) = 0 se obtiene

d

dy
F
(
x, y, u(x, y), v(x, y)

)
=
∂F

∂y
+
∂F

∂u

∂u

∂y
+
∂F

∂v

∂v

∂y
= 0

De forma análoga, para G se tiene

d

dy
G
(
x, y, u(x, y), v(x, y)

)
=
∂G

∂y
+
∂G

∂u

∂u

∂y
+
∂G

∂v

∂v

∂y
= 0

El sistema resultante es{
Fy(x, y, u, v) + Fu(x, y, u, v)

∂u
∂y + Fv(x, y, u, v)

∂v
∂y = 0

Gy(x, y, u, v) +Gu(x, y, u, v)
∂u
∂y +Gv(x, y, u, v)

∂v
∂y = 0

Reorganizando se tiene {
Fu

∂u
∂y + Fv

∂v
∂y = −Fy

Gu
∂u
∂y +Gv

∂v
∂y = −Gy

En forma matricial (
Fu Fv

Gu Gv

)(∂u
∂y
∂v
∂y

)
= −

(
Fy

Gy

)
Resolución con Regla de Cramer:

Sea

J =

∣∣∣∣Fu Fv

Gu Gv

∣∣∣∣
Entonces, aplicando la regla de Cramer para el sistema respecto a x obtenemos

∂u

∂x
=

∣∣∣∣−Fx Fv

−Gx Gv

∣∣∣∣
J

∂v

∂x
=

∣∣∣∣Fu −Fx

Gu −Gx

∣∣∣∣
J
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Y para el sistema respecto a y

∂u

∂y
=

∣∣∣∣−Fy Fv

−Gy Gv

∣∣∣∣
J

∂v

∂y
=

∣∣∣∣Fu −Fy

Gu −Gy

∣∣∣∣
J

De esta forma, hemos obtenido las cuatro derivadas parciales que describen cómo vaŕıan u y v respecto
de x e y

∂u

∂x
,

∂v

∂x
,

∂u

∂y
,

∂v

∂y

Ejemplo

Consideremos el siguiente sistema de ecuaciones{
F (x, y, u, v) = xu+ y v − 2 = 0

G(x, y, u, v) = u2 − v + x y = 0

el cual define impĺıcitamente a u y v como funciones de x e y es decir, u = u(x, y) y v = v(x, y)

Paso 1: Cálculo de las Derivadas Parciales de F y G

Para la función
F (x, y, u, v) = xu+ y v − 2

se tiene
Fx = u, Fy = v, Fu = x, Fv = y

Para la función
G(x, y, u, v) = u2 − v + x y

se obtiene
Gx = y, Gy = x, Gu = 2u, Gv = −1

Paso 2: Derivadas Parciales respecto a x

Dado que u = u(x, y) y v = v(x, y) aplicamos la regla de la cadena a cada ecuación (manteniendo y constante)
Para F (x, y, u, v) = 0

Fx + Fu ux + Fv vx = 0 =⇒ u+ xux + y vx = 0

Para G(x, y, u, v) = 0

Gx +Gu ux +Gv vx = 0 =⇒ y + 2uux − vx = 0

Escribimos el sistema en forma matricial(
Fu Fv

Gu Gv

)(ux
vx

)
= −

(
Fx

Gx

)

es decir, (
x y
2u −1

)(ux
vx

)
= −

(
u

y

)
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Definimos el Jacobiano del sistema (en las variables dependientes u y v)

J =

∣∣∣∣∣ x y

2u −1

∣∣∣∣∣ = x(−1)− (y)(2u) = −x− 2u y

Aplicando la regla de Cramer
Para ux

∂u

∂x
=

∣∣∣∣−Fx Fv

−Gx Gv

∣∣∣∣
J

=

∣∣∣∣−u y
−y −1

∣∣∣∣
−x− 2u y

Calculamos el determinante
(−u)(−1)− y(−y) = u+ y2

Por lo tanto,

ux =
u+ y2

−x− 2u y

Para vx

∂v

∂x
=

∣∣∣∣Fu −Fx

Gu −Gx

∣∣∣∣
J

=

∣∣∣∣ x −u
2u −y

∣∣∣∣
−x− 2u y

Calculamos el determinante
x(−y)− (−u)(2u) = −xy + 2u2

Por lo tanto,

vx =
−xy + 2u2

−x− 2u y

Paso 3: Derivadas Parciales respecto a y

Ahora, diferenciamos con respecto a y (manteniendo x constante)
Para F (x, y, u, v) = 0

Fy + Fu uy + Fv vy = 0 =⇒ v + xuy + y vy = 0

Para G(x, y, u, v) = 0

Gy +Gu uy +Gv vy = 0 =⇒ x+ 2uuy − vy = 0

El sistema en forma matricial es el mismo(
x y
2u −1

)(uy
vy

)
= −

(
v

x

)

Aplicando de nuevo la regla de Cramer
Para uy

∂u

∂y
=

∣∣∣∣−Fy Fv

−Gy Gv

∣∣∣∣
J

=

∣∣∣∣−v y
−x −1

∣∣∣∣
−x− 2u y

Determinante
(−v)(−1)− y(−x) = v + xy
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Por lo tanto,

uy =
v + xy

−x− 2u y

Para vy

∂v

∂y
=

∣∣∣∣Fu −Fy

Gu −Gy

∣∣∣∣
J

=

∣∣∣∣ x −v
2u −x

∣∣∣∣
−x− 2u y

Determinante
x(−x)− (−v)(2u) = −x2 + 2u v

Por lo tanto,

vy =
−x2 + 2u v

−x− 2u y
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13 IS-LM

El modelo IS–LM determina simultáneamente el ingreso real Y y la tasa de interés r en el corto plazo,
mediante el equilibrio en dos mercados: el de bienes y servicios (curva IS) y el monetario (curva LM).
Además, incorpora la relación entre ingreso y recaudación fiscal.

Y = C
(
Yd
)
+ I(r) + g

Mp = L
(
Y, r
)

Yd = Y − T
(
Y, θ
)

1. Mercado de bienes y servicios (IS)

Y = C
(
Yd
)
+ I(r) + g

� Y : producción (o ingreso) agregado.

� C(Yd): consumo de los hogares, función creciente de ingreso disponible Yd.

� I(r): inversión de las empresas, función decreciente de la tasa r.

� g: gasto público, exógeno.

La curva IS (“Investment–Saving”) es el conjunto de (Y, r) que satisfacen esta identidad.

2. Mercado monetario (LM)
Mp = L

(
Y, r
)

� Mp: oferta real de dinero (stock), fijada por la autoridad monetaria.

� L(Y, r): demanda de dinero, creciente en Y (∂L/∂Y > 0) y decreciente en r (∂L/∂r < 0).

La curva LM (“Liquidity preference–Money supply”) es el conjunto de puntos de (Y, r) que igualan oferta y
demanda de dinero.

3. Ingreso disponible
Yd = Y − T

(
Y, θ
)

donde T (Y, θ) es la recaudación fiscal, función creciente de Y . El ingreso disponible Yd es el que efectivamente
determina el consumo.

Resolución del modelo IS–LM por derivación impĺıcita

Partimos del modelo: 
Y = C(Yd) + I(r) + g

Mp = L(Y, r)

Yd = Y − T (Y, θ)
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Variables endógenas
Y Ingreso (producción) de equilibrio
r Tasa de interés de equilibrio

Variables exógenas
g Gasto público
Mp Oferta real de dinero (stock monetario)
θ Parámetro(s) fiscales en T (Y, θ)

Hipótesis de comportamiento:

0 < C ′(Y − T (Y, θ)
)
< 1, 0 < TY (Y, θ) < 1, I ′(r) < 0, LY (Y, r) > 0, Lr(Y, r) < 0, Tθ(Y, θ) > 0

Sustituyendo Yd en la primera ecuación obtenemos dos ecuaciones en las variables endógenas Y y r:F (Y, r; g, θ) = Y − C
(
Y − T (Y, θ)

)
− I(r)− g = 0

G(Y, r;Mp) = L(Y, r)−Mp = 0

El objetivo es encontrar
∂Y

∂g
y
∂r

∂g
. Es decir, el efecto que tiene un aumento del gasto público en el

producto y en la tasa de interés.

Paso 1: Derivadas parciales

Derivamos ambas ecuaciones respecto a g, recordemos que Y depende de g, también r depende de g por lo
tanto debemos utilizar regla de la cadena:

F ′g =
∂F

∂Y

∂Y

∂g
+
∂F

∂r

∂r

∂g
+
∂F

∂g

∂g

∂g
= 0

G′g =
∂G

∂Y

∂Y

∂g
+
∂G

∂r

∂r

∂g
+
∂G

∂g

∂g

∂g
= 0

Derivamos ambas ecuaciones respecto a g, manteniendo Mp y θ constantes:

∂

∂g

[
Y − C

(
Y − T (Y, θ)

)
− I(r)− g

]
=
(
1− C ′(Y − T (Y, θ)

)
[1− TY (Y, θ)]

) ∂Y
∂g

− I ′(r)
∂r

∂g
− 1 = 0

∂

∂g

[
L(Y, r)−Mp

]
= LY (Y, r)

∂Y

∂g
+ Lr(Y, r)

∂r

∂g
= 0


∂

∂g

[
Y − C

(
Y − T (Y, θ)

)
− I(r)− g

]
=
(
1− C ′(Y − T (Y, θ)

)
[1− TY (Y, θ)]

) ∂Y
∂g

− I ′(r)
∂r

∂g
− 1 = 0

∂

∂g

[
L(Y, r)−Mp

]
= LY (Y, r)

∂Y

∂g
+ Lr(Y, r)

∂r

∂g
= 0

Paso 2: Sistema matricial

De aqúı obtenemos el sistema lineal

(
1− C ′(Y − T (Y, θ)

)
[1− TY (Y, θ)] − I ′(r)

LY (Y, r) Lr(Y, r)

)
∂Y

∂g
∂r

∂g

 =

(
1

0

)
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Paso 3: Resolver con la Regla de Cramer

El determinante del sistema es

J =
[
1− C ′(Y − T (Y, θ)

)
[1− TY (Y, θ)]

]
Lr(Y, r) −

[
−I ′(r)

]
LY (Y, r)

Por Cramer,

∂Y

∂g
=

∣∣∣∣∣1 − I ′(r)

0 Lr(Y, r)

∣∣∣∣∣
J

=
1 · Lr(Y, r)

J
=
Lr(Y, r)

J

∂r

∂g
=

∣∣∣∣∣1− C ′(Y − T (Y, θ)
)
[1− TY (Y, θ)] 1

LY (Y, r) 0

∣∣∣∣∣
J

=
−LY (Y, r)

J

Paso 4: Signos e interpretación

Dado que

0 < C ′(Y − T (Y, θ)
)
< 1 0 < TY (Y, θ) < 1 I ′(r) < 0 LY (Y, r) > 0 Lr(Y, r) < 0

se cumple
1− C ′(Y − T (Y, θ)

)
[1− TY (Y, θ)] > 0 − I ′(r) > 0

Por tanto el determinante

J =
[
1−

0< ·<1︷ ︸︸ ︷
C ′(Y − T (Y, θ)

)︸ ︷︷ ︸
0< ·<1

×
(
1− TY (Y, θ)

)︸ ︷︷ ︸
0< ·<1

]
︸ ︷︷ ︸

>0

× Lr(Y, r)︸ ︷︷ ︸
<0

−
(
−I ′(r)

)︸ ︷︷ ︸
>0

× LY (Y, r)︸ ︷︷ ︸
>0

< 0

Como Lr < 0, LY > 0, el numerador de ∂Y/∂g es negativo y el de ∂r/∂g también es negativo:

∂Y

∂g
=
Lr

J
> 0

∂r

∂g
=

−LY

J
> 0

Cuando el gobierno aumenta su gasto g, se desencadenan dos efectos:

Más demanda ⇒ más producción (Y )

� Gasto directo: el gobierno inyecta recursos pagando obras, sueldos, compras de insumos, etc.

� Cadena de efectos: esos pagos se convierten en ingresos para empresas y trabajadores, que a su vez
consumen parte de ese ingreso extra, generando más ventas e ingresos en otros sectores.

� Multiplicador: cada unidad de gasto público produce más de una unidad de aumento en el ingreso
agregado, pues el dinero circula y se vuelve a gastar varias veces.

Mayor Y ⇒ mayor demanda de dinero ⇒ sube r

� Demanda de dinero transaccional: al crecer Y , hogares y empresas realizan más transacciones y nece-
sitan más liquidez.

� Curva LM: L(Y, r) crece con Y y cae con r. Con Mp fijo, un aumento de L empuja la tasa r al alza
hasta reequilibrar oferta y demanda monetaria.

� Crowding-out parcial: al subir r, el crédito se encarece y la inversión privada se modera, atenuando algo
el impulso inicial sobre Y , pero sin anularlo.
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14 Homogeneidad

Definición de Homogeneidad

Una función F : Rn
+ → R se dice homogénea de grado k si, para todo λ > 0 y todo x = (x1, . . . , xn) ∈ Rn

+, se
cumple

F (λx1, . . . , λxn) = λk F (x1, . . . , xn).

Cuando k = 0, se dice que la función es homogénea de grado cero.

Ejemplos

1. Homogeneidad de grado 1. Sea
F (x, y) = 3x+ 5y.

Entonces, para cualquier λ > 0,

F (λx, λy) = 3(λx) + 5(λy) = λ (3x+ 5y) = λ1 F (x, y).

Por tanto, F es homogénea de grado k = 1.

2. Homogeneidad de grado 0 (relación de precios). Sea

G(x, y) =
x

y
.

Para λ > 0,

G(λx, λy) =
λx

λy
=
x

y
= λ0G(x, y).

Aśı, G es homogénea de grado k = 0.

Propiedades de las Funciones Homogéneas

1. Multiplicación de escala: Si F es homogénea de grado k, entonces para todo λ, µ > 0

F (λµx) = (λµ)k F (x) = λk F (µx).

2. Combinación lineal: Si F y G son homogéneas de grado k, y a, b ∈ R, entonces

H(x) = aF (x) + bG(x)

es homogénea de grado k.

3. Producto: Si F es homogénea de grado k y G de grado m, entonces

(F ·G)(x) = F (x)G(x)

es homogénea de grado k +m.

4. Cociente: Si G(x) ̸= 0 y F , G son homogéneas de grado k y m respectivamente, entonces(
F

G

)
(x) =

F (x)

G(x)

es homogénea de grado k −m.

5. Derivadas: Si F es homogénea de grado k y diferenciable, entonces todas sus derivadas parciales de
orden m son homogéneas de grado k −m.
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Teorema de Euler para Funciones Homogéneas

Teorema (Euler). Sea F : Rn
+ → R una función diferenciable y homogénea de grado k. Entonces

n∑
i=1

xi
∂F

∂xi
(x1, . . . , xn) = k F (x1, . . . , xn).

Demostración. Dado que F es homogénea de grado k, para todo λ > 0 se cumple

F (λx1, λx2, . . . , λxn) = λk F (x1, x2, . . . , xn).

Definamos la función de una sola variable

Φ(λ) = F (λx1, λx2, . . . , λxn).

Por la homogeneidad, también
Φ(λ) = λk F (x1, . . . , xn).

Como F es diferenciable, Φ es diferenciable y podemos derivar ambas expresiones respecto a λ.

� Por la regla de la cadena,

Φ′(λ) =

n∑
i=1

∂F

∂xi
(λx1, . . . , λxn)

d

dλ
(λxi) =

n∑
i=1

∂F

∂xi
(λx1, . . . , λxn)xi.

� Por derivar λkF (x1, . . . , xn),

Φ′(λ) =
d

dλ

(
λk F (x1, . . . , xn)

)
= k λk−1 F (x1, . . . , xn).

Igualando ambas expresiones para Φ′(λ),

n∑
i=1

xi
∂F

∂xi
(λx1, . . . , λxn) = k λk−1 F (x1, . . . , xn).

Finalmente, evaluamos en λ = 1:

n∑
i=1

xi
∂F

∂xi
(x1, . . . , xn) = k F (x1, . . . , xn),

como queŕıamos demostrar. ■

Ejemplo

Consideremos la función polinómica
F (x, y) = x3 + 2x y2.

1. Verificación de homogeneidad. Observamos que cada término es de grado 3:

(λx)3 = λ3x3, 2 (λx) (λy)2 = 2λ3 x y2.

Por tanto,
F (λx, λy) = (λx)3 + 2 (λx) (λy)2 = λ3

(
x3 + 2x y2

)
= λ3 F (x, y),

y concluimos que F es homogénea de grado k = 3.
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2. Derivadas parciales.

Fx(x, y) =
∂

∂x

(
x3 + 2x y2

)
= 3x2 + 2 y2,

Fy(x, y) =
∂

∂y

(
x3 + 2x y2

)
= 4x y.

3. Comprobación del Teorema de Euler. El teorema de Euler establece que, si F es homogénea de
grado 3, entonces

xFx(x, y) + y Fy(x, y) = 3F (x, y).

Calculemos el lado izquierdo:

x
(
3x2 + 2y2

)
+ y

(
4xy

)
= 3x3 + 2x y2 + 4x y2 = 3x3 + 6x y2.

Y el lado derecho:
3F (x, y) = 3

(
x3 + 2x y2

)
= 3x3 + 6x y2.

Como coinciden,
xFx + y Fy = 3F (x, y),

confirmamos que el teorema de Euler se cumple.

Interpretación Económica

En economı́a, la homogeneidad y el Teorema de Euler tienen aplicaciones directas en teoŕıa de la producción
y en demanda:

� Funciones de producción con rendimientos a escala: Si la función de producción Y = F (K,L)
(capital K, trabajo L) es homogénea de grado k:

F (λK, λL) = λkF (K,L),

entonces:

– k = 1 implica rendimientos constantes a escala: duplicar todos los insumos duplica la producción.

– k > 1 implica rendimientos crecientes a escala: duplicar insumos más que duplica la producción.

– k < 1 implica rendimientos decrecientes a escala: duplicar insumos menos que duplica la pro-
ducción.

� Demanda homogénea de grado cero en precios e ingreso: Una función de demanda xi(p1, . . . , pn,M)
(precios pj , ingreso M) es homogénea de grado cero:

xi(λp1, . . . , λpn, λM) = xi(p1, . . . , pn,M).

Esto significa que si todos los precios y el ingreso cambian en la misma proporción, las cantidades
demandadas no vaŕıan: sólo importan los precios relativos y el poder de compra real.

� Elasticidades parciales y grado de homogeneidad: Sea F (K,L) una función de producción
diferenciable y homogénea de grado k. Definimos las elasticidades parciales de la producción con
respecto a cada factor como

εK =
∂F

∂K

K

F (K,L)
, εL =

∂F

∂L

L

F (K,L)
.

Aplicando el Teorema de Euler:

K FK(K,L) + LFL(K,L) = k F (K,L),
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y dividiendo ambos lados por F (K,L), obtenemos

εK + εL = k.

Interpretación: la suma de las elasticidades parciales de la producción respecto al capital
y al trabajo coincide con el grado de homogeneidad de la función. Económicamente, esto
significa que los rendimientos a escala coinciden con la suma de elasticidades parciales

– Si εK + εL = k = 1, rendimientos constantes a escala.

– Si εK + εL = k > 1, rendimientos crecientes a escala.

– Si εK + εL = k < 1, rendimientos decrecientes a escala.
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15 Autovalores y autovectores

Definición de autovalor y autovector

Sea A ∈ Kn×n

Un escalar λ ∈ K es autovalor de A si existe un vector v ∈ Kn \ {0} tal que

Av = λ v

El vector v que satisface esta igualdad se llama autovector asociado al autovalor λ

Polinomio caracteŕıstico

Definición

Sea A ∈ Kn×n. El polinomio caracteŕıstico de A se define como

χA(λ) = det
(
A− λI

)

Cómo hallarlo

1. Formar la matriz A− λI

2. Calcular det(A− λI) como función de λ

3. Simplificar el determinante para obtener un polinomio en λ

Ejemplo para matriz 2× 2

Sea

A =

(
a b
c d

)
Entonces

A− λI =

(
a− λ b
c d− λ

)
y

χA(λ) = det

(
a− λ b
c d− λ

)
= (a− λ) (d− λ)− b c

Cálculo de autovalores y autovectores

Procedimiento

1. Resolver χA(λ) = 0 para obtener los valores propios λ1, λ2, λ3, ...

2. Para cada λi, resolver (A− λiI) v = 0 buscando vectores no nulos
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Ejemplo numérico para matriz 2× 2

Sea

A =

(
2 1
1 2

)
Entonces

A− λI =

(
2 1
1 2

)
−
(
λ 0
0 λ

)
=

(
2− λ 1
1 2− λ

)
por lo que

χA(λ) = det
(
A− λI

)
= det

(
2− λ 1
1 2− λ

)
= (2− λ)2 − 1 = λ2 − 4λ+ 3

Resolvemos
λ2 − 4λ+ 3 = 0

obteniendo
λ1 = 1, λ2 = 3

Cálculo paso a paso de los autovectores

Para λ1 = 1 Calculamos

A− I =

(
2 1
1 2

)
−
(
1 0
0 1

)
=

(
1 1
1 1

)
Resolvemos el sistema (

1 1
1 1

)(
x
y

)
=

(
0
0

)
Lo que equivale a la ecuación única

x+ y = 0

De aqúı y = −x, por lo que un autovector es

v1 =

(
x
y

)
= x

(
1
−1

)
, x ̸= 0

Tomamos v1 = (1,−1)T

Para λ2 = 3 Calculamos

A− 3I =

(
2 1
1 2

)
−
(
3 0
0 3

)
=

(
−1 1
1 −1

)
Resolvemos el sistema (

−1 1
1 −1

)(
x
y

)
=

(
0
0

)
Equivalente a

−x+ y = 0

y = x

Por lo tanto,

v2 =

(
x
y

)
= x

(
1
1

)
, x ̸= 0

Tomamos v2 = (1, 1)T

En conclusión los autovectores asociados son v1 =

(
1
−1

)
para λ = 1 y v2 =

(
1
1

)
para λ = 3
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Relación entre coeficientes del polinomio caracteŕıstico, traza y de-
terminante

Sea el polinomio caracteŕıstico de A de grado n:

χA(λ) = det(A− λI) = λn + cn−1λ
n−1 + · · ·+ c1λ+ c0

Coeficientes y autovalores

Si λ1, . . . , λn son las ráıces de χA:

cn−1 = −
n∑

i=1

λi, c0 = (−1)n
n∏

i=1

λi

En palabras: el coeficiente cn−1 representa el negativo de la suma de todos los autovalores, reflejando que la
traza de A coincide con dicha suma. Por su parte, c0 corresponde al producto de los autovalores multiplicado
por (−1)n.

Traza y determinante

Recordando que:

tr(A) =

n∑
i=1

aii, det(A) =

n∏
i=1

λi

Existe una relación entre autovalores y traza y determinante:

n∑
i=1

λi = tr(A),

n∏
i=1

λi = det(A)

En particular, para n = 2 y A =

(
a b
c d

)
:

χA(λ) = λ2 − (a+ d)λ+ (ad− bc),

por lo que
tr(A) = a+ d, det(A) = ad− bc

Ejemplo numérico

Para la matriz

A =

(
2 1
1 2

)
sus autovalores son λ1 = 1 y λ2 = 3. En este caso,

tr(A) = 2 + 2 = 4 = λ1 + λ2 = 1 + 3, det(A) = 2 · 2− 1 · 1 = 3 = λ1λ2 = 1 · 3

Además, el polinomio caracteŕıstico calculado fue

χA(λ) = λ2 − 4λ+ 3

De donde se observa que:

� El coeficiente de λ es −4, que coincide con −
(
λ1 + λ2

)
= −(1 + 3).

� El término constante es 3, que coincide con el producto λ1 · λ2 = 1 · 3.
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Ráıces iguales y multiplicidad

Multiplicidad algebraica

Sea A ∈ Kn×n y λ un autovalor de A.

� La multiplicidad algebraica de λ, denotada multalg(λ), es el grado con que λ aparece como ráız del
polinomio caracteŕıstico χA(λ).

χA(λ) = (λ− λ1)
m1 · · · (λ− λk)

mk , multalg(λi) = mi.

� Obsérvese que
∑k

i=1mi = n, es decir, la suma de todas las multiplicidades algebraicas es el grado del
polinomio caracteŕıstico.

Multiplicidad geométrica

Para cada autovalor λ, definimos su multiplicidad geométrica como

multgeom(λ) = dim
(
ker(A− λI)

)
Donde ker() es el conjunto de todos los vectores que se env́ıan al vector cero (espacio nulo). Es el número
de vectores linealmente independientes que generan el espacio propio asociado a λ.

Relación entre ambas multiplicidades

Para todo autovalor λ de A se tiene siempre:

1 ≤ multgeom(λ) ≤ multalg(λ)

Ejemplo numérico

Considérese

B =

(
2 1
0 2

)
Su polinomio caracteŕıstico es

χB(λ) = (2− λ)2

luego λ = 2 tiene multalg(2) = 2. En cambio,

Cálculo de los autovectores para λ = 2 Partimos de

B − 2I =

(
0 1
0 0

)
y buscamos todos los vectores v = (x, y)T tales que

(B − 2I) v =

(
0 1
0 0

)(
x
y

)
=

(
y
0

)
=

(
0
0

)
De la igualdad

(
y, 0
)T

= (0, 0)T se obtiene la única ecuación

y = 0
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Aśı, x es libre y los autovectores asociados a λ = 2 son

v =

(
x
0

)
, x ̸= 0

Por ejemplo, para x = 1 podemos tomar como autovector base

v =

(
1
0

)
Y por lo tanto tenemos multiplicidad geométrica igual a 1, porque solamente hay un vector linealmente
independiente.

Otro ejemplo numérico

C =

(
2 0
0 2

)
Polinomio caracteŕıstico

χC(λ) = det(C − λI) =

∣∣∣∣2− λ 0
0 2− λ

∣∣∣∣ = (2− λ)2

Entonces,
λ = 2 con multalg(2) = 2

Autovectores para λ = 2

C − 2I =

(
0 0
0 0

)
⇒ (C − 2I)v = 0 para todo v ∈ R2

Por lo tanto, todos los vectores no nulos son autovectores y el espacio propio tiene dimensión 2:

multgeom(2) = 2

Conclusión: En este caso,
multalg(2) = multgeom(2) = 2

Un conjunto base de autovectores puede ser:

v1 =

(
1
0

)
, v2 =

(
0
1

)
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16 Formas cuadráticas

Definición

Una forma cuadrática en las variables x1, . . . , xn es un polinomio homogéneo de grado dos:

q(x1, . . . , xn) = a11x
2
1 + a22x

2
2 + · · ·+ annx

2
n + 2

(
a12x1x2 + a13x1x3 + · · ·+ an−1,nxn−1xn

)
También se puede expresar de forma compacta mediante sumatorias:

q(x1, . . . , xn) =

n∑
i=1

aiix
2
i + 2

∑
1≤i<j≤n

aijxixj

Representación matricial

Escribiendo

x =

x1...
xn

 y Q =
(
aij
)n
i,j=1

con Q simétrica (es decir, aij = aji), la forma cuadrática se expresa de modo compacto como

q(x) = xT Qx

En esta matriz, cada entrada qii = aii multiplica x2i y cada par de entradas Qij = Qji = aij multiplica 2xixj .

Ejemplo para 3 variables

Consideremos la forma cuadrática en (x1, x2, x3):

q(x1, x2, x3) = 3x21 + 4x22 + 5x23 + 2x1x2 + 4x1x3 + 6x2x3

La matriz asociada es

Q =

3 1 2
1 4 3
2 3 5

 ,

con lo que

q(x) = xTQx =
(
x1 x2 x3

)3 1 2
1 4 3
2 3 5

x1x2
x3

 .

Clasificación de formas cuadráticas según autovalores

Sea una forma cuadrática q(x) = xTQx con matriz simétrica Q y autovalores λ1, . . . , λn.

� Definida positiva: q(x) > 0 para todo x ̸= 0. Se cumple si y solo si λi > 0 ∀i.

� Semidefinida positiva: q(x) ≥ 0 para todo x. Se cumple si y solo si λi ≥ 0 ∀i.

� Definida negativa: q(x) < 0 para todo x ̸= 0. Se cumple si y solo si λi < 0 ∀i.

� Semidefinida negativa: q(x) ≤ 0 para todo x. Se cumple si y solo si λi ≤ 0 ∀i.

� Indefinida: q(x) toma valores positivos y negativos. Ocurre cuando ∃ i, j : λi > 0, λj < 0.
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Ejemplo práctico

Estudiar el signo de
φ(x1, x2, x3) = x21 − 2x1x2 + 3x22 + x23

sujeta a {
x1 + x2 − x3 = 0,

−x1 + x3 = 0.

1. Parametrización de las restricciones.
De −x1 + x3 = 0 obtenemos x3 = x1. Sustituyendo en x1 + x2 − x3 = 0 queda

x1 + x2 − x1 = 0 =⇒ x2 = 0.

Luego todo vector (x1, x2, x3) que cumple las restricciones es

(x1, x2, x3) = (x1, 0, x1) = y

1
0
1

 ,

con y = x1 ∈ R.

2. Forma restringida.
Sustituyendo (x1, 0, x1) en φ:

φ(y, 0, y) = y2 − 0 + 0 + y2 = 2 y2.

Es decir, la forma sobre la variable libre y queda

ψ(y) = 2 y2.

3. Conclusión.
Como 2 y2 > 0 para todo y ̸= 0, la forma cuadrática φ es positiva definida en el subespacio definido por las
dos restricciones.

Método matricial (sin sustitución directa)

Queremos estudiar
φ(x) = xTAx,

sujeta a las restricciones lineales C x = 0.

1. Matriz A y restricción C. De

φ(x1, x2, x3) = x21 − 2x1x2 + 3x22 + x23

leemos

A =

 1 −1 0

−1 3 0

0 0 1


y las ecuaciones {

x1 + x2 − x3 = 0,

−x1 + x3 = 0
=⇒ C =

(
1 1 −1

−1 0 1

)
.

https://cabraljuan.github.io


Juan Andrés Cabral

2. Base del espacio restringido (cálculo de kerC). Partimos de

C =

(
1 1 −1

−1 0 1

)
, x =

x1x2
x3

 ,

y resolvemos la ecuación lineal

C x = 0 ⇐⇒

{
x1 + x2 − x3 = 0,

−x1 + x3 = 0.

De la segunda ecuación se obtiene
x3 = x1.

Sustituyendo en la primera:
x1 + x2 − x1 = 0 =⇒ x2 = 0.

Aśı, todo vector x en kerC tiene la forma

x =

x10
x1

 = x1

1
0
1

 .

Por tanto una base de kerC está dada por la columna

B =

1
0
1

 ,

y cualquier x que satisfaga las restricciones se puede escribir x = B y, donde y ∈ R es la variable libre.

3. Forma cuadrática restringida. La matriz de la forma en la variable libre y es

M = BTAB =
(
1 0 1

) 1 −1 0
−1 3 0
0 0 1

1
0
1

 = 2.

Por tanto la forma restringida es
ψ(y) = yTMy = 2 y2.

4. Conclusión. Como M = 2 > 0, la forma φ es positiva definida sobre el subespacio dado por las
restricciones.
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17 Menores

Definiciones de Menores

Sea A =
(
aij
)n
i,j=1

∈ Kn×n una matriz simétrica (aunque las definiciones de menores se aplican a cualquier

matriz cuadrada, el contexto de formas cuadráticas usualmente implica simetŕıa).

Menor (general) de orden k. Un menor (general) de orden k de A es el determinante de una submatriz
k × k de A. Esta submatriz se forma seleccionando un conjunto I = {i1, . . . , ik} de k ı́ndices de filas (con
i1 < i2 < · · · < ik) y un conjunto J = {j1, . . . , jk} de k ı́ndices de columnas (con j1 < j2 < · · · < jk). Si

A[I, J ] denota la submatriz formada por las filas en I y las columnas en J , es decir, A[I, J ] =
(
aipjq

)k
p,q=1

,

entonces el menor es det(A[I, J ]).

Menor principal de orden k. Un menor principal de orden k es un menor de orden k donde el conjunto
de ı́ndices de las filas seleccionadas es el mismo que el conjunto de ı́ndices de las columnas seleccionadas.
Es decir, si I = {i1, . . . , ik} ⊂ {1, 2, . . . , n} con i1 < i2 < · · · < ik, el menor principal asociado a I (a veces
denotado MI o ∆I) es:

∆I = det(A[I, I]),

donde A[I, I] =
(
aipiq

)k
p,q=1

. Estos son los determinantes de las submatrices principales de A.

Menor principal inicial (o dominante) de orden k. Un menor principal inicial o menor principal ĺıder
de orden k (usualmente denotado ∆k) es el menor principal obtenido al seleccionar las primeras k filas y las
primeras k columnas de A. Es decir, corresponde a tomar I = {1, 2, . . . , k}:

∆k = det


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 .

En resumen, para una matriz A

� Menor (general) de orden k: Determinante de cualquier submatriz k × k (los ı́ndices de las k filas
elegidas pueden ser distintos de los ı́ndices de las k columnas elegidas).

� Menor principal de orden k (∆I): Determinante de una submatriz k × k formada tomando el mismo
conjunto de k ı́ndices para las filas y para las columnas.

� Menor principal ĺıder (o de orden inicial) de orden k (∆k): Determinante de la submatriz k×k superior
izquierda de A. Es un caso particular de menor principal.

Ejemplo: menores de una matriz 3× 3

Sea

A =

 2 −1 0

−1 3 1

0 1 2

 .
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1. Menores de orden 1 (todos los elementos de A):

M11 = 2, M12 = −1, M13 = 0,

M21 = −1, M22 = 3, M23 = 1,

M31 = 0, M32 = 1, M33 = 2.

2. Menores principales de orden 1:

M11 = 2, M22 = 3, M33 = 2.

3. Menores de orden 2 (todas las submatrices 2× 2):

{1, 2} {1, 3} {2, 3}

{1, 2} det

(
2 −1
−1 3

)
= 5 det

(
2 0
−1 1

)
= 2 det

(
−1 0
3 1

)
= −1

{1, 3} det

(
2 −1
0 1

)
= 2 det

(
2 0
0 2

)
= 4 det

(
−1 0
1 2

)
= −2

{2, 3} det

(
−1 3
0 1

)
= −1 det

(
−1 1
0 2

)
= −2 det

(
3 1
1 2

)
= 5

4. Menores principales de orden 2: Sólo los sub́ındices coinciden:

detA[{1, 2}, {1, 2}] = 5, detA[{1, 3}, {1, 3}] = 4, detA[{2, 3}, {2, 3}] = 5.

5. Menores principales ĺıderes (o menores principales de orden inicial) :

∆1 = det
(
[2]
)
= 2, ∆2 = det

(
2 −1
−1 3

)
= 5, ∆3 = detA = 8.

Otro ejemplo

Para

A =

 2 −1 0
−1 3 1
0 1 4


los menores principales ĺıderes son

A1 = (2) , A2 = |
(

2 −1
−1 3

)
| , A3 = |A|

Clasificación de formas cuadráticas mediante menores

Sea la forma cuadrática
Q(x) = xTAx

con A simétrica.
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Menores principales iniciales

Denotamos por ∆k el menor principal inicial de orden k, es decir

∆k = det
(
A[{1, . . . , k}, {1, . . . , k}]

)
,

y por ∆I el menor principal cualquiera, correspondiente al subconjunto de ı́ndices I ⊂ {1, . . . , n}.2

Criterio de Sylvester (definitud estricta)

� Q es definida positiva si y solo si

∆k > 0 para todo k = 1, . . . , n.

� Q es definida negativa si y solo si

(−1)k ∆k > 0 para todo k = 1, . . . , n.

Criterio para semidefinitud

� Q es semidefinida positiva si y solo si todos los menores principales ∆I ≥ 0 para todo I ⊂ {1, . . . , n}.

� Q es semidefinida negativa si y solo si (−1)|I| ∆I ≥ 0 para todo I ⊂ {1, . . . , n}.

Criterio para formas cuadráticas indefinidas

Si existen ı́ndices I, J ⊂ {1, . . . , n} tales que los menores principales satisfacen ∆I > 0 y ∆J < 0, entonces Q
es indefinida

Observaciones

� Las condiciones del criterio de Sylvester son necesarias y suficientes para la definitud de Q, pero para
la semidefinitud son solo necesarias.

� Una matriz que es definida positiva es semidefinida positiva y si es negativa también es semidefinida
negativa.

Algunos casos posibles con una matriz simétrica 4x4

Sea |Ai| el menor principal ĺıder de orden i.3

(a) Si |A1| > 0, |A2| > 0, |A3| > 0 y |A4| > 0, entonces A es definida positiva.

(b) Si |A1| < 0, |A2| > 0, |A3| < 0 y |A4| > 0, entonces A es definida negativa.

(c) Si |A1| > 0, |A2| > 0, |A3| = 0 y |A4| < 0, entonces A es indefinida debido al cuarto menor principal.

(d) Si |A1| < 0, |A2| < 0, |A3| < 0 y |A4| < 0, entonces A es indefinida debido al segundo y cuarto menor
principal.

2Para un subconjunto I ⊂ {1, . . . , n}, definimos ∆I := det
(
A[I, I]

)
como el menor principal asociado a I. Por ejemplo,

∆{1,3} = det

(
a11 a13
a31 a33

)
. Cuando I = {1, . . . , k} escribimos simplemente ∆k, el menor principal ĺıder de orden k.

3En esta sección, Ai denota la submatriz principal ĺıder de orden i, obtenida tomando las primeras i filas y columnas de A.
En consecuencia, |Ai| = det

(
A[{1, . . . , i}, {1, . . . , i}]

)
, que también denotamos por ∆i.
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(e) Si |A1| = 0, |A2| < 0, |A3| > 0 y |A4| = 0, entonces A es indefinida debido al segundo menor principal.

(f) Si |A1| > 0, |A2| = 0, |A3| > 0 y |A4| > 0, entonces A no es definida. No es semidefinida negativa,
pero puede ser semidefinida positiva. Para comprobar la semidefinitud positiva, es necesario verificar
los 15 menores principales de A, no sólo los cuatro primeros. Si ninguno es negativo, A es semidefinida
positiva; si al menos uno es negativo, A es indefinida.

(g) Si |A1| = 0, |A2| > 0, |A3| = 0 y |A4| > 0, entonces A no es definida, pero puede ser semidefinida
positiva o semidefinida negativa. Para decidirlo, es necesario comprobar nuevamente los 15 menores
principales de A.

Ejemplo

Sea

E =

−4 1 0
1 −3 1
0 1 −2


Menor principal ĺıder de orden 1

∆1 = det
(
E[{1}, {1}]

)
= det

(
[−4]

)
= −4

Menor principal ĺıder de orden 2

∆2 = det

(
−4 1
1 −3

)
= (−4) (−3)− 1 · 1 = 12− 1 = 11

Menor principal ĺıder de orden 3

∆3 = det(E) = −4 det

(
−3 1
1 −2

)
− 1 det

(
1 1
0 −2

)
+ 0det

(
1 −3
0 1

)
= −4

(
(−3)(−2)− 1 · 1

)
− 1
(
1 · (−2)− 1 · 0

)
= −4(6− 1)− 1(−2) = −20 + 2 = −18

Verificación del criterio de Sylvester

(−1)1 ∆1 = −(−4) = 4 > 0

(−1)2 ∆2 = 11 > 0

(−1)3 ∆3 = −(−18) = 18 > 0

Por tanto E es definida negativa

Otro ejemplo

Sea

C =

1 1 0
1 1 0
0 0 0


Menores principales de orden 1

det
(
C[{1}, {1}]

)
= 1 det

(
C[{2}, {2}]

)
= 1 det

(
C[{3}, {3}]

)
= 0
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Menores principales de orden 2

det
(
C[{1, 2}, {1, 2}]

)
= det

(
1 1
1 1

)
= 0

det
(
C[{1, 3}, {1, 3}]

)
= det

(
1 0
0 0

)
= 0

det
(
C[{2, 3}, {2, 3}]

)
= det

(
1 0
0 0

)
= 0

Menor principal de orden 3
det(C) = 0

Como todos los menores principales son ≥ 0, C es semidefinida positiva según el criterio
completo de semidefinitud positiva

Otro ejemplo

Sea

D =

4 2 0
2 1 0
0 0 0


Menores principales de orden 1

det
(
D[{1}, {1}]

)
= 4

det
(
D[{2}, {2}]

)
= 1

det
(
D[{3}, {3}]

)
= 0

Menores principales de orden 2

det
(
D[{1, 2}, {1, 2}]

)
= det

(
4 2
2 1

)
= 4 · 1− 2 · 2 = 0

det
(
D[{1, 3}, {1, 3}]

)
= det

(
4 0
0 0

)
= 4 · 0− 0 · 0 = 0

det
(
D[{2, 3}, {2, 3}]

)
= det

(
1 0
0 0

)
= 1 · 0− 0 · 0 = 0

Menores principales de orden 3
det(D) = 0

Como todos los menores principales son ≥ 0 la matriz es semidefinida positiva.

Otro ejemplo

Sea

F =

−1 0 0
0 −2 0
0 0 0


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Menores principales de orden 1
det
(
F [{1}, {1}]

)
= −1

det
(
F [{2}, {2}]

)
= −2

det
(
F [{3}, {3}]

)
= 0

Menores principales de orden 2

det
(
F [{1, 2}, {1, 2}]

)
= det

(
−1 0
0 −2

)
= (−1) · (−2)− 0 · 0 = 2

det
(
F [{1, 3}, {1, 3}]

)
= det

(
−1 0
0 0

)
= (−1) · 0− 0 · 0 = 0

det
(
F [{2, 3}, {2, 3}]

)
= det

(
−2 0
0 0

)
= (−2) · 0− 0 · 0 = 0

Menor principal de orden 3
det(F ) = 0

Verificación del criterio de semidefinitud negativa

(−1)1 ∆1 : (−1) · (−1) = 1 ≥ 0

(−1)1 ∆
(2,2)
1 : (−1) · (−2) = 2 ≥ 0

(−1)1 ∆
(3,3)
1 : (−1) · 0 = 0 ≥ 0

(−1)2 ∆
{1,2}
2 : 2 ≥ 0

(−1)2 ∆
{1,3}
2 : 0 ≥ 0

(−1)2 ∆
{2,3}
2 : 0 ≥ 0

(−1)3 ∆3 : (−1) · 0 = 0 ≥ 0

Por tanto F es semidefinida negativa.
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18 Concavidad y convexidad

Definición de convexidad y concavidad para funciones de una vari-
able

Sea f : I ⊆ R → R, donde I es un intervalo convexo. Decimos que:

� f es convexa si para todo x1, x2 ∈ I y todo t ∈ [0, 1] se cumple

f
(
(1− t)x1 + t x2

)
≤ (1− t)f(x1) + t f(x2)

Intuición geométrica: El término

(1− t)f(x1) + t f(x2)

coincide con el valor que adopta la recta secante en la posición intermedia (1− t)x1 + t x2. Por tanto,
la desigualdad

f
(
(1− t)x1 + t x2

)
≤ (1− t)f(x1) + t f(x2)

expresa que, en cada punto entre x1 y x2, la curva de f permanece siempre por debajo de esa secante

� f es cóncava si para todo x1, x2 ∈ I y todo t ∈ [0, 1] se cumple

f
(
(1− t)x1 + t x2

)
≥ (1− t)f(x1) + t f(x2)

Intuición geométrica: Aqúı la desigualdad se invierte: el gráfico de f “queda por encima” de la recta
secante entre los puntos dados

−1 −0.5 0.5 1

0.5

1

(
x1, f(x1)

) (
x2, f(x2)

)recta secante

(
x1+x2

2 , f(x1+x2

2 )
) x

y

Ejemplo Convexo: f(x) = x2

−1 −0.5 0.5 1

−1

−0.5(
x1, f(x1)

) (
x2, f(x2)

)
recta secante

(
x1+x2

2 , f(x1+x2

2 )
)

x
y

Ejemplo Cóncavo: f(x) = −x2
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De hecho los dos casos anteriores corresponden a convexidad estricta ya que la recta secante pasa
por arriba o por debajo de cualquier punto. También puede suceder que la recta secante esté justo por arriba
de la función. Lo que implicaŕıa convexidad no estricta:

−1 −0.5 0.5 1

0.5

1

x

y

−1 −0.5 0.5 1

−1

−0.5

x
y

Relacionando la concavidad y convexidad con conjuntos convexos

� Convexidad: la región {
(x, y) | y ≥ f(x)

}
es un conjunto convexo. Esto significa que si tomas dos puntos (x1, y1) y (x2, y2) por encima del gráfico
de f , el segmento que los une permanece siempre por encima de la curva

� Concavidad: la región {
(x, y) | y ≤ f(x)

}
es un conjunto convexo. En este caso, cualquier segmento trazado entre dos puntos por debajo del
gráfico de f queda enteramente dentro de esa región

−1 −0.5 0.5 1

0.5

1

x

y

Ejemplo Convexo: f(x) = x2
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−1 −0.5 0.5 1

−1

−0.5

x
y

Ejemplo Cóncavo: f(x) = −x2

Concavidad y convexidad en R2

Definición:

� f es convexa si para todo (x1, y1), (x2, y2) y todo t ∈ [0, 1] se cumple

f
(
(1− t)(x1, y1) + t(x2, y2)

)
≤ (1− t) f(x1, y1) + t f(x2, y2)

� f es cóncava si −f es convexa, es decir la desigualdad se invierte

Intuición geométrica: La intuición se mantiene, el conjunto que está por debajo de la gráfica de una
función cóncava es un conjunto convexo y el conjunto que está por arriba de una función convexa es un
conjunto convexo

Regla en base a derivadas segundas

Recordatorio: criterio para funciones de una variable
Sea g : I ⊂ R → R de clase C2 en un intervalo I. Entoncesg

′′(t) ≥ 0 ∀ t ∈ I =⇒ g es convexa en I

g′′(t) ≤ 0 ∀ t ∈ I =⇒ g es cóncava en I

Sea f : R2 → R de clase C2.

Tomemos dos puntos (x1, y1) y (x2, y2) en R2 y sea

g(t) = f
(
(1− t)x1 + t x2, (1− t)y1 + t y2

)
t ∈ [0, 1]

Intuición sobre g. Para entender qué hace g, primero observemos que

(x(t), y(t)) =
(
(1− t)x1 + t x2, (1− t)y1 + t y2

)
es la parametrización del segmento rectiĺıneo que une los puntos (x1, y1) y (x2, y2) en el plano Por tanto,

g(t) = f
(
x(t), y(t)

)
No es más que el valor de f al desplazarnos a lo largo de ese segmento
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� Cuando t = 0 estamos en (x1, y1)

� Cuando t = 1 estamos en (x2, y2)

� Para t ∈ (0, 1) recorremos los puntos intermedios

Por la regla de la cadena aplicada a dos variables:

g′(t) = fx
(
x(t), y(t)

) d
dt

(
(1− t)x1 + t x2

)
+ fy

(
x(t), y(t)

) d
dt

(
(1− t)y1 + t y2

)
= fx(x(t), y(t)) (x2 − x1) + fy(x(t), y(t)) (y2 − y1)

g′′(t) =
d

dt

[
fx(x(t), y(t))

]
(x2 − x1) +

d

dt

[
fy(x(t), y(t))

]
(y2 − y1)

=
[
fxx(x(t), y(t))x

′(t) + fxy(x(t), y(t)) y
′(t)
]
(x2 − x1)

+
[
fyx(x(t), y(t))x

′(t) + fyy(x(t), y(t)) y
′(t)
]
(y2 − y1)

Sabiendo que x′(t) = x2 − x1 y y′(t) = y2 − y1:

g′′(t) = fxx(x(t), y(t)) (x2 − x1) (x2 − x1) + fxy(x(t), y(t)) (y2 − y1) (x2 − x1)

+ fyx(x(t), y(t)) (x2 − x1) (y2 − y1) + fyy(x(t), y(t)) (y2 − y1) (y2 − y1)

Usando fxy = fyx, se agrupan los términos mixtos:

g′′(t) = fxx(x(t), y(t)) (x2 − x1)
2 + 2 fxy(x(t), y(t)) (x2 − x1)(y2 − y1) + fyy(x(t), y(t)) (y2 − y1)

2

Redefiniendo para mayor claridad:

w = x2 − x1 z = y2 − y1

g′′(t) = fxx
(
x(t), y(t)

)
w2 + 2 fxy

(
x(t), y(t)

)
w z + fyy

(
x(t), y(t)

)
z2

=
(
w z

)(fxx(x(t), y(t)) fxy
(
x(t), y(t)

)
fxy
(
x(t), y(t)

)
fyy
(
x(t), y(t)

))(w
z

)
Ahora, si la matriz Hessiana Hf (x, y) =

[
fij(x, y)

]
es semidefinida positiva en todo punto, entonces para

cada t ∈ [0, 1]
g′′(t) ≥ 0

Lo cual implica que g es convexa
Definamos la recta secante entre (0, g(0)) y (1, g(1)):

L(t) = g(0) + t
(
g(1)− g(0)

)
= (1− t) g(0) + t g(1)

Si la Hessiana Hf (x, y) es semidefinida positiva, entonces g′′(t) ≥ 0 en [0, 1], lo que por teoŕıa de
funciones de una variable implica

g(t) ≤ L(t) = (1− t) g(0) + t g(1)

Finalmente, usando g(0) = f(x1, y1) y g(1) = f(x2, y2), concluimos

f
(
(1− t)(x1, y1) + t (x2, y2)

)
= g(t) ≤ (1− t) f(x1, y1) + t f(x2, y2)

que es precisamente la condición de convexidad de f en R2

De forma análoga, si Hf es semidefinida negativa, entonces

g′′(t) ≤ 0 =⇒ g(t) ≥ (1− t) g(0) + t g(1)

y por tanto f es cóncava
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Extensión a Rn

El mismo argumento—considerar la función unidimensional g(t) = f
(
(1 − t)x + t y

)
—se aplica en Rn. Si

la matriz de derivadas segundas (matriz hessiana) es semidefinida positiva para todo x, entonces en cada
dirección y − x la derivada segunda g′′(t) ≥ 0, lo que implica la convexidad de g y, por tanto, la convexidad
de f . Análogamente, semidefinida negativa da concavidad de f en Rn

Además, si la Hessiana Hf (x) es definida positiva en todo punto, entonces f es estrictamente convexa; y si
Hf (x) es definida negativa en todo punto, entonces f es estrictamente cóncava
En resumen

Hessiana Hf (x) Condición (∀x ∈ D convexo, ∀h ∈ Rn) Función f

Semidefinida positiva hTHf (x)h ≥ 0 Convexa

Definida positiva hTHf (x)h > 0 para todo h ̸= 0 Estr. convexa

Semidefinida negativa hTHf (x)h ≤ 0 Cóncava

Definida negativa hTHf (x)h < 0 para todo h ̸= 0 Estr. cóncava

(Aqúı D denota el dominio de f .)

Ejemplo

Consideremos la función
f(x, y) = x2 + 2x y + 3 y2 (x, y) ∈ R2

Cálculo del Hessiano
Las segundas derivadas parciales son

fxx = 2, fxy = 2, fyy = 6

Por tanto la matriz Hessiana es

Hf (x, y) =

(
2 2

2 6

)

Comprobación de definitud (criterio de Sylvester).
Calculamos los menores principales iniciales:

∆1 = fxx = 2 > 0 ∆2 = detHf = (2)(6)− (2)2 = 12− 4 = 8 > 0

Como ∆1 > 0 y ∆2 > 0, Hf es definida positiva en todo R2

Conclusión:
Al ser su Hessiana definida positiva para todo (x, y), la función f es estrictamente convexa en R2

Otro ejemplo

Consideremos
f(x, y) = −x2 (x, y) ∈ R2

Cálculo del Hessiano

fxx = −2, fxy = 0, fyy = 0

Por tanto la matriz Hessiana es

Hf (x, y) =

(
−2 0

0 0

)
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Comprobación de semidefinición.
Los menores principales iniciales son

∆1 = fxx = −2 < 0 ∆2 = detHf = (−2) · 0− 02 = 0

Como ∆1 < 0 y ∆2 = 0, debemos analizar un menor principal más: ∆2,2
1 = 0 ≤ 0, entoncesHf es semidefinida

negativa (pero no definida negativa)

Conclusión.
Al ser su Hessiana semidefinida negativa en todo R2, f es cóncava. Además, f no es convexa,
ni estrictamente cóncava, ni estrictamente convexa

Cuasiconcavidad y cuasiconvexidad

Primero, observemos que:

� Toda función cóncava es cuasicóncava

� Toda función convexa es cuasiconvexa

Caracterización de cuasiconvexidad y cuasiconcavidad

� f es cuasiconvexa si y solo si todos sus subniveles Lα(f) son conjuntos convexos

� f es cuasicóncava si y solo si todos sus superniveles Uα(f) son conjuntos convexos

Interpretación en curvas de nivel
Recordemos que las curvas de nivel de f para un valor α son los conjuntos

{x ∈ Rn : f(x) = α}

Los conjuntos de nivel (subniveles y superniveles) son las regiones delimitadas por esas curvas:

Lα(f) = {x ∈ Rn : f(x) ≤ α}

Uα(f) = {x ∈ Rn : f(x) ≥ α}

Versión estricta (interpretación geométrica pura)

- f es estrictamente cuasiconvexa si, para todo α, cada subnivel Lα(f) es un conjunto estrictamente
convexo. Es decir: no sólo Lα(f) es convexo, sino que además sus fronteras no contienen tramos lineales.
- f es estrictamente cuasicóncava si, para todo α, cada supernivel Uα(f) es un conjunto estrictamente
convexo.

Ejemplos gráficos

Para los siguientes ejemplos vamos a tomar funciones y graficar sus curvas de nivel para analizar el conjunto
que está por arriba o por debajo de esas curvas:
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0.5 1 1.5 2 2.5 3

1

2

3

u(x, y) = 1

u(x, y) ≥ 1

x

y

Estrictamente cuasicóncava: u(x, y) =
√
xy, x > 0, y > 0

−1 1

−1

1

x2 + y2 = 1

v(x, y) ≤ 1
x

y

Estrictamente cuasiconvexa: v(x, y) = x2 + y2

0.5 1 1.5 2 2.5 3

1

2

3

u = 1

u ≥ 1

x

y

Cuasicóncava (no estricta): u(x, y) = min{x, y}
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0.5 1 1.5 2 2.5 3

1

2

3

f ≤ 1

f = 1

x

y

Cuasiconvexa (no estricta): f(x, y) = max{x, y}

0.5 1 1.5 2 2.5

1

2

x+ y = 2

cuasiconvexa

cuasicóncava

x

y

Cuasiconvexa y cuasicóncava: g(x, y) = x+ y

Casos univariables

Para los casos de funciones de una sola variable el análisis gráfico es análogo, solamente que ahora los conjuntos
de supernivel y subnivel son lineas rectas, que son convexas cuando no están cortadas y son convexos cuando
se cortan.

0.5 1 1.5 2

1

2
f(x)

nivel α

supernivel
x

f(x)

Cuasicóncava
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0.5 1 1.5 2

0.5

1

1.5

2

g(x)

nivel α

subnivel
x

g(x)

Cuasiconvexa

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

1.5

2

h(x)

nivel α

subnivel subnivel
x

h(x)

No cuasiconvexa

Existe un teorema asociado a la cuasiconcavidad y cuasiconvexidad de funciones de una variable. Si
una función es creciente o decreciente, entonces es simultáneamente cuasiconvexa y cuasicóncava.
Teorema (monotonicidad y cuasiconvexidad/cuasiconcavidad en una variable). Sea f : R → R
una función diferenciable en un intervalo I ⊆ R.

Si
f ′(x) ≥ 0 para todo x ∈ I

o bien
f ′(x) ≤ 0 para todo x ∈ I

entonces f es simultáneamente

� cuasiconvexa en I, y

� cuasicóncava en I.

Criterio de hessiano orlado para cuasiconvexidad y cuasiconcavidad

Las siguientes condiciones son válidas cuando evaluamos las funciones en números positivos (es decir en el
ortante no negativo):
Sea f : U ⊆ Rn → R de clase C2 en un dominio convexo U , y supongamos ∇f(x) ̸= 0 para todo x ∈ U .
Definimos la matriz hessiano orlado en x como

B(x) =

(
0 ∇f(x)T

∇f(x) Hf (x)

)
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donde Hf (x) es la Hessiana usual de f
Entonces se tiene la caracterización siguiente:

Condiciones necesarias:

� f es cuasiconvexa en U solo si los menores principales ĺıderes (sin contar el 0) son todos menores o
iguales a 0

� f es cuasicóncava en U solo si los menores principales ĺıderes (sin contar el 0) alternan de signo (o son
iguales a 0) empezando por el negativo

Condiciones suficientes y que además aseguran cuasiconcavidad y cuasiconvexidad estricta:

� f es cuasiconvexa en U si los menores principales de ĺıderes (sin contar el 0) son todos menores a 0

� f es cuasicóncava en U si los menores principales de ĺıderes (sin contar el 0) alternan de signo empezando
por el negativo

Para que z = f(x1, . . . , xn) sea cuasicóncava en el n-ortante no negativo, es necesario que

|B1| ≤ 0, |B2| ≥ 0, . . . , |Bn|

{
≤ 0 n impar

≥ 0 n par

Una condición suficiente para que f sea cuasicóncava en el n-ortante no negativo es que

|B1| < 0, |B2| > 0, . . . , |Bn|

{
< 0 n impar

> 0 n par

Ejemplo

Sea
f : A→ R, A = {(x, y) ∈ R2 : x > 0, y > 0}, f(x, y) = x y

Derivadas parciales y Hessiano

fx = y, fy = x, Hf (x, y) =

(
0 1

1 0

)
Hessiano orlado
Definimos las siguientes matrices:

B1 =

(
0 y

y 0

)
B2 =

0 y x

y 0 1

x 1 0


Cálculo de determinantes

detB1 = − y2 < 0 detB2 = 2x y > 0

Conclusión
Para cuasiconcavidad en el dominio convexo A se exige

D1 < 0, D2 ≥ 0

Como x, y > 0 garantizan D1 < 0 y D2 > 0, concluimos que

f(x, y) = x y es cuasicóncava en A
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Relación y diferencias entre cuasiconcavidad y concavidad (o cua-
siconvexidad y convexidad)

� Relación entre ambas:

– Toda función cóncava es cuasicóncava

– La rećıproca no es cierta: hay funciones cuasicóncavas que no son cóncavas

– Toda función convexa es cuasiconvexa

– La rećıproca no es cierta: hay funciones cuasiconvexas que no son convexas

– Toda función estrictamente cóncava es estrictamente cuasicóncava

– Toda función estrictamente convexa es estrictamente cuasiconvexa

� Operaciones y composición:

– Suma y combinación lineal (con coeficientes no negativos) de cóncavas/convexas produce una
función cóncava/convexa

– La suma de funciones cuasicóncavas/cuasiconvexas no siempre es cuasicóncava/cuasiconvexa

– La cuasiconcavidad/cuasiconvexidad se conserva bajo composición con funciones estrictamente
crecientes

– Además, sea
h(x) = (g ◦ f)(x)

con
f : M ⊆ Rn → R, g : I ⊆ R → R

donde M es convexo e I es un intervalo. Entonces:

1. Si f es convexa y g es creciente y convexa, entonces h es convexa

2. Si f es cóncava y g es creciente y cóncava, entonces h es cóncava

Ejemplo

Anteriormente probamos que f(x, y) = xy es cuasicóncava. Veamos una transformación de dicha función:
sea

g(x, y) = ln(xy) = lnx+ ln y

gx =
1

x
, gy =

1

y
, gxx = − 1

x2
, gxy = 0, gyy = − 1

y2

B1(x, y) =

(
0 gx

gx gxx

)
=

(
0 1

x
1
x − 1

x2

)

D1(x, y) = detB1 = − 1

x2
< 0

B2(x, y) =

 0 gx gy

gx gxx gxy

gy gxy gyy

 =

0 1
x

1
y

1
x − 1

x2 0
1
y 0 − 1

y2


D2(x, y) = detB2 =

2

x2 y2
> 0

Conclusión

D1 < 0, D2 > 0

Por tanto g(x, y) = ln(xy) es cuasicóncava en A
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19 Optimización sin restricciones

Optimización sin restricciones: cálculo univariable

Sea f : I ⊆ R → R una función de clase C2. Para encontrar extremos locales de f aplicamos el siguiente
procedimiento:

1. Condición de primer orden: Calcular la derivada primera y resolver

f ′(x∗) = 0

Los puntos x∗ que satisfacen esta ecuación son los puntos cŕıticos.

2. Condición de segundo orden: Evaluar la derivada segunda en cada x∗:

f ′′(x∗)


> 0 ⇒ x∗ es un mı́nimo local

< 0 ⇒ x∗ es un máximo local

= 0 ⇒ criterio inconcluso (punto de inflexión posible)

Ejemplo rápido: Para f(x) = x3 − 3x:

f ′(x) = 3x2 − 3, f ′(x) = 0 ⇒ x = ±1; f ′′(x) = 6x.

f ′′(1) = 6 > 0 ⇒ x = 1 mı́nimo local, f ′′(−1) = −6 < 0 ⇒ x = −1 máximo local.

Pasando a n variables

Denotemos
x = (x1, x2, . . . , xn) ∈ Rn

y sea
x∗ = (x∗1, x

∗
2, . . . , x

∗
n)

un punto cŕıtico en Rn.

F : A ⊆ Rn → R

la condición de primer orden generaliza a
∇F (x∗) = 0

es decir, todas las derivadas parciales en x∗ deben anularse.
La condición de segundo orden se extrae de la matriz Hessiana H = ∇2F (x), que reúne todas las

derivadas segundas de F . De la misma manera que f ′′(x∗) en una variable nos indica concavidad o convexidad,
la semidefinición positiva o negativa de H nos permitirá determinar si F tiene un mı́nimo o máximo local en
x∗.
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Condiciones suficientes y criterio de la matriz Hessiana

Sea
F : U ⊆ Rn −→ R

de clase C2 y sea x∗ ∈ U un punto cŕıtico, es decir,

∇F (x∗) = 0.

� Óptimo local (criterio de la Hessiana).

– Si H(x∗) es definida negativa, entonces x∗ es máximo local.

– Si H(x∗) es definida positiva, entonces x∗ es mı́nimo local.

– Si H(x∗) es indefinida, entonces x∗ no es ni mı́nimo ni máximo local (punto silla).

� Óptimo global (funciones convexas o cóncavas).

– Si F es convexa en U y ∇F (x∗) = 0, entonces x∗ es mı́nimo global.

– Si F es cóncava en U y ∇F (x∗) = 0, entonces x∗ es máximo global.

Criterio de los menores principales para óptimo local.

Sea
F : U ⊆ Rn −→ R

de clase C2 y supongamos que x∗ ∈ U es un punto cŕıtico:

∇F (x∗) = 0

Denotemos ∆k por el menor principal inicial de orden k de la matriz Hessiana evaluada en el punto cŕıtico.

Condición para máximo local. Si los menores principales alternan de signo comenzando negativo:

∆1 < 0, ∆2 > 0, ∆3 < 0, . . . , (−1)n ∆n > 0

entonces x∗ es un máximo local de F .

Condición para mı́nimo local . Si todos los menores principales son positivos:

∆1 > 0, ∆2 > 0, ∆3 > 0, . . . , ∆n > 0

entonces x∗ es un mı́nimo local de F .

Criterio de los menores principales para óptimo global

Mı́nimo global. Para que F tenga un mı́nimo global en U , es suficiente que la matriz Hessiana H sea
semidefinida positiva en todos los puntos x ∈ U . En términos de menores principales, esto equivale a
que para cualquier submatriz principal (es decir, para cualquier selección de filas y columnas
con los mismos ı́ndices) el determinante sea mayor o igual a cero. Cuando esto se cumple, F es
convexa y cualquier punto cŕıtico es automáticamente un mı́nimo global.

Máximo global. Análogamente, F tiene un máximo global en U si la Hessiana H es semidefinida negativa
en todo U . En lenguaje de menores principales, esto significa que para cada submatriz principal
de orden k, el determinante de dicha submatriz multiplicado por (−1)k es mayor o igual a cero.
Bajo esta condición, F es cóncava y cada punto cŕıtico será un máximo global.
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Diferencia entre óptimos locales y globales

La principal diferencia entre óptimos que son locales y óptimos globales es que al momento de realizar el
cálculo de segundas derivadas (con la matriz hessiana), para asegurar un óptimo local tenemos que evaluar
el hessiano en un punto particular, de tal forma de mostrar la función tiene un comportamiento similar al
de una función estrictamente convexa/cóncava en la vecindad inmediata de x∗. Por otro lado, para poder
confirmar que un óptimo es global es necesario analizar la forma de la función, analizando el hessiano sin
evaluar en ningún punto particular y ver si la función es convexa o cóncava.

Ejemplo: F (x, y) = x3 − y3 + 9xy

1. Derivadas parciales y puntos cŕıticos

Definimos
F (x, y) = x3 − y3 + 9x y

Calculamos las derivadas parciales:

Fx =
∂F

∂x
= 3x2 + 9y Fy =

∂F

∂y
= −3y2 + 9x

Para hallar los puntos cŕıticos resolvemos 3x2 + 9y = 0

−3y2 + 9x = 0

De la primera ecuación:

y = −x
2

3

Sustituyendo en la segunda:

−3
(
−x2

3

)2
+ 9x = 0 =⇒ −3

x4

9
+ 9x = 0 =⇒ −x4

3 + 9x = 0 =⇒ −x4 + 27x = 0 =⇒ x (−x3 + 27) = 0

De aqúı obtenemos

x = 0 =⇒ y = 0, −x3 + 27 = 0 =⇒ x3 = 27 =⇒ x = 3 =⇒ y = −32

3
= −3

Por tanto, los puntos cŕıticos son
(0, 0) y (3,−3)

2. Hessiano y clasificación de extremos

El Hessiano es

∇2F (x, y) =

(
Fxx Fxy

Fyx Fyy

)
=

(
6x 9

9 −6y

)

1. En (0, 0):

∇2F (0, 0) =

(
0 9

9 0

)
, ∆1 = 0, ∆2 = −81 < 0

Como ∆2 < 0, es un punto silla (saddle point).
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2. En (3,−3):

∇2F (3,−3) =

(
18 9

9 18

)
, ∆1 = 18 > 0, ∆2 = 18 · 18− 9 · 9 = 243 > 0

Aqúı la Hessiana es definida positiva, por lo que (3,−3) es un mı́nimo local.

Conclusión:

� (0, 0) es un punto silla.

� (3,−3) es un mı́nimo local de F .

� No hay máximos locales.

3. Concavidad/convexidad global de F

Para determinar si los extremos locales son también globales necesitamos ver si F es convexa o cóncava en
todo R2. Calculamos de nuevo el Hessiano general:

∇2F (x, y) =

(
6x 9

9 −6y

)
Los menores principales siguen un patrón ya que por ejemplo 6x, puede ser negativo o positivo. Lo

mismo con −6y y |H|. No podemos afirmar que tenemos un óptimo global.

Ejemplo: f(x, y) = x2 + y2

1. Derivadas parciales y punto cŕıtico

Sea
f(x, y) = x2 + y2, (x, y) ∈ R2

Calculamos las derivadas parciales:
fx = 2x, fy = 2y

El único punto cŕıtico se obtiene resolviendo

2x = 0, 2y = 0 =⇒ (x, y) = (0, 0)

2. Hessiano y clasificación de extremos locales

El Hessiano es constante:

∇2f(x, y) =

(
2 0

0 2

)
Sus menores principales son

∆1,1
1 = 2 > 0, ∆2,2

1 = 2 > 0, ∆2 = det∇2f = 4 > 0

de modo que la matriz es definida positiva en todo R2. Por el criterio de segundo orden, (0, 0)
es un mı́nimo local.
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3. Convexidad global y mı́nimo global

Ya que ∇2f(x, y) ≥ 0 en todo R2, f es convexa en R2. En toda función convexa cualquier mı́nimo
local es también mı́nimo global.

Óptimo local y global únicos

Teorema: Sea f : D → R con D ⊆ Rn, abierto y convexo, f ∈ C1(D) y sea x0 ∈ D un punto cŕıtico de f .
Se verifica:

1. Si f es convexa en D entonces f presenta en x0 un mı́nimo global.

2. Si f es estrictamente convexa en D entonces f presenta en x0 un mı́nimo global único.

3. Si f es cóncava en D entonces f presenta en x0 un máximo global.

4. Si f es estrictamente cóncava en D entonces f presenta en x0 un máximo global único.

Preservación de máximos y mı́nimos locales en dos variables

Sea D ⊆ R un conjunto abierto. Sea φ : D → R una función de clase C2 tal que φ′(t) > 0 para todo t ∈ D.
Sea f : R2 → R una función de clase C2 tal que su imagen está contenida en D (es decir, f(x, y) ∈ D para
todo (x, y) en el dominio de f o en la región de interés). Entonces:

1. (x0, y0) es punto cŕıtico de f entonces (x0, y0) es punto cŕıtico de φ ◦ f .

2. Si la matriz HessianaD2f(x0, y0) es definida negativa (máximo local) o definida positiva (mı́nimo local),
la Hessiana de φ ◦ f en (x0, y0) mantiene la misma definitud.

Ejemplos de φ

� φ(t) = a t+ b, con a > 0.

� φ(t) = et.

� φ(t) = log(t+ c), con c > 0 (dominio t > −c).

� φ(t) = t3 (con t ̸= 0 ).

� φ(t) =
√
t (en t > 0).
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20 Aplicaciones económicas de optimización

Teorema de la envolvente (optimización sin restricciones)

Consideremos el problema de maximización sin restricciones

max
x,y

U = f(x, y, ϕ)

donde x, y son variables endógenas y ϕ es un parámetro exógeno.

Condiciones de óptimo

Las condiciones necesarias de primer orden en el óptimo (x∗(ϕ), y∗(ϕ)) son

∂f

∂x

(
x∗(ϕ), y∗(ϕ), ϕ

)
= 0,

∂f

∂y

(
x∗(ϕ), y∗(ϕ), ϕ

)
= 0. (1)

Bajo condiciones de segundo orden adecuadas, estas ecuaciones definen impĺıcitamente x∗(ϕ) y y∗(ϕ).

x∗ = x∗(ϕ) y∗ = y∗(ϕ)

Función de valor indirecta

Sustituyendo en la función objetivo obtenemos la función de valor máximo (función objetivo indirecta)

V (ϕ) = f
(
x∗(ϕ), y∗(ϕ), ϕ

)
Esta es una función que depende en última instancia de ϕ, a diferencia de la función objetivo que

depende de x y de y.

Derivada de la función de valor

Al diferenciar V con respecto a ϕ usando la regla de la cadena:

dV

dϕ
= fx

∂x∗

∂ϕ
+ fy

∂y∗

∂ϕ
+ fϕ

donde todos los términos fx, fy, fϕ se evalúan en
(
x∗(ϕ), y∗(ϕ), ϕ

)
.

Pero por las condiciones de primer orden (1) se tiene fx = fy = 0 en el óptimo, y por tanto

dV

dϕ
= fϕ

(
x∗(ϕ), y∗(ϕ), ϕ

)
Este es el teorema de la envolvente: la derivada de la función de valor máximo con respecto al parámetro
ϕ equivale al efecto directo de ϕ sobre la función objetivo, ignorando los efectos indirectos v́ıa x∗(ϕ) y y∗(ϕ).

Interpretación

� La función de valor V (ϕ) “envuelve” la familia de funciones f(x, y, ϕ) optimizadas en (x∗(ϕ), y∗(ϕ)) al
variar ϕ.

� El resultado muestra que, en el óptimo, no hace falta calcular ∂x∗/∂ϕ ni ∂y∗/∂ϕ para conocer dV
dϕ :

basta con el efecto directo fϕ.
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Intuición: ¿Por qué “teorema de la envolvente”?

El nombre proviene de la idea geométrica de que la función de valor indirecta

V (ϕ) = max
x,y

f(x, y, ϕ)

es la envolvente de la familia de gráficas { z = f(x, y, ϕ) : (x, y) ∈ R2} al variar el parámetro ϕ. A continuación
presentamos varias perspectivas:

Envolvente de familias de curvas/superficies

Para cada ϕ se tiene un punto en el plano (ϕ, z):

z = f
(
x∗(ϕ), y∗(ϕ), ϕ

)
Estos puntos conforman una curva al variar ϕ. La curva ĺımite que toca tangencialmente a cada una de estas
es la envolvente Gráficamente, V (ϕ) “abraza” o “envuelve” el punto más alto de cada miembro de la familia

Ejemplo de envolvente con f(x; t) = t x2 + x+ 10

Consideremos la familia de funciones

f(x; t) = t x2 + x+ 10 x ∈ R, t < 0

donde x es la variable de decisión y t un parámetro exógeno. Tomamos t < 0 para garantizar que la
maximización en x sea bien comportada (coeficiente de x2 negativo)

Función valor

Definimos la función de valor
V (t) = max

x∈R
f(x; t)

Condición de primer orden

Para cada t < 0, el óptimo x∗(t) satisface

∂f

∂x
= 2 t x+ 1 = 0 =⇒ x∗(t) = − 1

2t

Cálculo de la envolvente

Sustituyendo x∗(t) en f :

V (t) = f
(
x∗(t); t

)
= t
(
− 1

2t

)2
+
(
− 1

2t

)
+ 10 =

1

4t
− 1

2t
+ 10 = 10− 1

4t

Teorema de la envolvente

Directamente,

V ′(t) =
d

dt

(
10− 1

4t

)
=

1

4t2

Por el teorema de la envolvente, también debe cumplirse

V ′(t) =
∂f

∂t

(
x∗(t); t

)
= x∗(t)2 =

(
− 1

2t

)2
=

1

4t2

confirmando que los efectos indirectos v́ıa x∗(t) se anulan en la derivada de la función valor
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Interpretación

� Cada f es una parábola cóncava en x (porque t < 0)

� La envolvente V (t) = 10− 1
4t toca tangencialmente a cada parábola en x = x∗(t)

� El teorema de la envolvente nos dice que para medir el impacto de t sobre el máximo, basta con ∂f/∂t
evaluada en el óptimo

Para obtener la envolvente como función de la variable x, invertimos esta relación:

x = − 1

2t
=⇒ t = − 1

2x
x > 0

Sustituyendo t(x) en f hallamos

V (x) = f
(
x; t(x)

)
=
(
− 1

2x

)
x2 + x+ 10 = −x

2
+ x+ 10 =

x

2
+ 10

Por tanto la envolvente viene dada por

y = V (x) = 10 + 1
2 x x > 0

Gráficamente esta función toca todos los puntos máximos de la familia de parábolas:
f(x, t) = tx2 + x+ 10

−1 1 2

9

10

11

t = −0.5

t = −1

t = −2

y = 10 + 1
2 x

x

y

Ejemplo económico: maximización de beneficios sin restricciones

Consideremos una empresa que produce una cantidad q ≥ 0 de un bien y enfrenta un precio de mercado
p > 0. Su beneficio π viene dado por

π(q; p) = p q − C(q)

donde C(q) es su función de costes, asumida de clase C2 y estrictamente convexa (C ′′(q) > 0)

Problema de optimización

Para cada precio p la empresa elige q para
max
q≥0

π(q; p)

Las condiciones de primer y segundo orden son:

∂π

∂q
= p− C ′(q) = 0 =⇒ C ′(q∗) = p

∂2π

∂q2
= −C ′′(q∗) < 0 =⇒ π es cóncava en q y q∗(p) es el único máximo
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Función de beneficio indirecto

Definimos la función valor (beneficio máximo) como

Π(p) = π
(
q∗(p); p

)
= p q∗(p)− C

(
q∗(p)

)
Teorema de la envolvente

Al derivar Π(p) con respecto a p, aplicando el teorema de la envolvente se obtiene

dΠ

dp
=
∂π

∂p

(
q∗(p); p

)
= q∗(p)

sin necesidad de calcular dq∗

dp , pues ∂π/∂q = 0 en el óptimo

Función concreta

Supongamos C(q) = 1
2 c q

2 con c > 0. Entonces

C ′(q) = c q C ′′(q) = c > 0

y la condición de primer orden p = c q da

q∗(p) =
p

c
Π(p) = p · p

c
− 1

2 c
(
p
c

)2
=
p2

2c

Verifiquemos la envolvente:
dΠ

dp
=

d

dp

(
p2

2c

)
=
p

c
= q∗(p)

Interpretación

� La condición de envolvente ∂π/∂q = 0 nos da la oferta óptima q∗(p)

� El teorema de la envolvente permite calcular la sensibilidad del beneficio máximo al precio p simplemente
con ∂π/∂p = q, sin derivar la curva de oferta q∗(p). En este caso el resultado nos sugiere que ante un
aumento del precio de venta, el beneficio máximo se incrementa.

Otro ejemplo económico: minimización de costes sujeto a restricción.

Consideremos una empresa cuya tecnoloǵıa de producción viene dada por la función Cobb–Douglas

y = F (L,K) = LαK1−α α ∈ (0, 1)

donde L y K son trabajo y capital, y y > 0 es el nivel de output

Problema de minimización de costes

Dados los precios de los factores w (salario) y r (renta del capital) y el nivel y, la empresa resuelve

min
L,K

C = wL + rK sujeto a LαK1−α = y
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Demanda condicionada y coste mı́nimo

Escribimos el Lagrangiano
L = wL+ rK + µ

(
y − LαK1−α

)
Las condiciones de primer orden son

∂L
∂L

= w − µαLα−1K1−α = 0
∂L
∂K

= r − µ (1− α)LαK−α = 0

junto con la restricción LαK1−α = y. De las dos primeras:

w

α
L1−αKα−1 =

r

1− α
L−αKα =⇒ L∗

K∗ =
α

1− α

r

w

Sustituyendo en LαK1−α = y y resolviendo se obtienen las demandas condicionadas

L∗(w, r, y) = y

(
α

w

)α(
1− α

r

)1−α

α K∗(w, r, y) = y

(
α

w

)α(
1− α

r

)1−α

(1− α)

El coste mı́nimo resultante es

C(w, r, y) = wL∗(w, r, y) + rK∗(w, r, y) = y
(

w
α

)α(
r

1−α

)1−α

Lema de Shephard

La función de coste C(w, r, y) es la envolvente de la familia de funciones wL + rK sujeta a F (L,K) = y
Por el teorema de la envolvente, al derivar C con respecto a w (tratando y, r constantes) basta con tomar el
efecto directo:

∂C

∂w
= L∗(w, r, y)

De hecho, si derivamos la expresión encontrada:

∂

∂w

[
y (w/α)α(r/(1− α))1−α

]
= y α (w/α)α−1(r/(1− α))1−α = L∗(w, r, y)

Análogamente,
∂C

∂r
= K∗(w, r, y)

Interpretación

� C(w, r, y) es la curva de coste de largo plazo: “envuelve” todas las rectas wL + rK tangentes a las
iso-productivas LαK1−α = y

� La envolvente simplifica el cálculo de las demandas condicionadas: no necesitamos derivar L∗(w, r, y)
ni K∗(w, r, y) respecto a w o r para obtener ∂C/∂w, ∂C/∂r

� Este resultado se conoce como el Lema de Shephard. El cual nos dice que una vez que tenemos
la función de costo indirecta basta con derivar esta con respecto a los precios de los insumos para
encontrar la demanda de insumos condicionada.
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Otro ejemplo: Monopolista multiproducto con dos bienes

Sea un monopolista que ofrece dos bienes q1, q2 ≥ 0 con demanda inversa lineal

p1(q1, q2) = a− b q1 − c q2 p2(q1, q2) = d− e q1 − f q2

y costos lineales
C(q1, q2) = g q1 + h q2

Entonces el beneficio es

π(q1, q2) = p1 q1 + p2 q2 − C(q1, q2) =
(
a− bq1 − cq2

)
q1 +

(
d− eq1 − fq2

)
q2 −

(
gq1 + hq2

)
Condiciones de primer orden

Para encontrar el máximo, derivamos la función de beneficio respecto a cada cantidad e igualamos a cero.
Es crucial incluir todos los términos cruzados.

La derivada respecto a q1 es:

∂π

∂q1
= (a− 2b q1 − c q2) + (−e q2)− g = a− g − 2b q1 − (c+ e)q2 = 0

La derivada respecto a q2 es:

∂π

∂q2
= (−c q1) + (d− e q1 − 2f q2)− h = d− h− (c+ e)q1 − 2f q2 = 0

Esto nos da un sistema de dos ecuaciones lineales:{
2b q1 + (c+ e)q2 = a− g

(c+ e)q1 + 2f q2 = d− h

Resolviendo este sistema (por ejemplo, usando la regla de Cramer o sustitución) se obtienen las canti-
dades óptimas:

q∗1 =
2f (a− g)− (c+ e)(d− h)

4bf − (c+ e)2

q∗2 =
2b (d− h)− (c+ e)(a− g)

4bf − (c+ e)2

Condición de segundo orden (Hessiano)

El Hessiano de π respecto a (q1, q2) es:

∇2π =


∂2π

∂q21

∂2π

∂q1∂q2

∂2π

∂q2∂q1

∂2π

∂q22

 =

(
−2b −(c+ e)

−(c+ e) −2f

)

Para que (q∗1 , q
∗
2) sea un máximo local, este Hessiano debe ser definido negativo:

−2b < 0 =⇒ b > 0

y su determinante debe ser positivo:

det(∇2π) = (−2b)(−2f)− (−(c+ e))(−(c+ e)) = 4 b f − (c+ e)2 > 0

Note que este denominador es el mismo que el utilizado para calcular q∗1 y q∗2 .
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Sensibilidad respecto de b y d

Al aplicar el teorema de la envolvente al beneficio máximo Π(b, d), basta con derivar la función de beneficio
π respecto a los parámetros b y d, y luego evaluar en el punto óptimo (q∗1 , q

∗
2).

∂π

∂b
= − q21 =⇒ dΠ

db
= −

(
q∗1
)2

∂π

∂d
= q2 =⇒ dΠ

dd
= q∗2

Interpretación

� Un aumento de b (la demanda del bien 1 es más sensible a su propia cantidad) reduce el beneficio
máximo, ya que dΠ

db = − (q∗1)
2 < 0.

� Un aumento de d (mayor disposición a pagar por el bien 2) incrementa el beneficio máximo, ya
que se asume que la cantidad óptima dΠ

dd = q∗2 será positiva.
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21 Optimización con restricciones de igualdad

Optimización con restricciones y Lagrangiano

En muchos problemas de optimización no basta con minimizar (o maximizar) una función objetivo f : Rn → R
libremente: es preciso hacerlo sujeto a ciertas restricciones que deben cumplirse. En este apartado vamos
a revisar el método de los multiplicadores de Lagrange (o método del Lagrangiano) que es una herramienta
fundamental para abordar problemas con restricciones de igualdad

Formulación del problema

Consideremos el problema
min
x∈Rn

f(x)

sujeto a gi(x) = 0, i = 1, . . . , k

donde f : Rn → R, gi : Rn → R son funciones (C1) y las curvas gi(x) = 0 definen el conjunto factible.

El Lagrangiano

Definimos la función Lagrangiana asociada al problema como

L(x, λ) = f(x) +

k∑
i=1

λi gi(x)

El lagrangiano también puede formularse como:

L(x, λ) = f(x)−
k∑

i=1

λi gi(x)

Ya que el término λ es una variable artificial que puede tener signo negativo o positivo. El resultado es
indiferente de si aparece sumando o restando (de hecho véase que la restricción gi(x) = 0 puede multiplicarse
ambos lados por −1 y sigue siendo válida).

Condiciones de primer orden

Un par (x∗, λ∗) que resuelve el problema debe satisfacer las siguientes condiciones, que incluyen

∇xL(x∗, λ∗) = ∇f(x∗) +
k∑

i=1

λ∗i ∇gi(x∗) = 0

gi(x
∗) = 0, i = 1, . . . , k

Estas condiciones son las mismas para maximizar o minimizar un problema de optimización libre. Por
lo que el método del lagrangiano nos proporciona una simplificación del problema a cambio de agregar un
multiplicador lagrangiano por cada restricción.

Interpretación geométrica

Geométricamente, en el punto óptimo x∗ el gradiente de la función objetivo debe poder expresarse como
combinación lineal de los gradientes de las restricciones

∇f(x∗) ∈ span{∇g1(x∗), . . . ,∇gk(x∗)}
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Ejemplo: Minimización con restricción lineal

Consideremos el problema
min
x,y∈R

f(x, y) = x2 + y2

sujeto a g(x, y) = x+ y − 1 = 0

El Lagrangiano asociado es

L(x, y, λ) = x2 + y2 − λ (x+ y − 1)

Las condiciones de primer orden son

∂L
∂x

= 2x− λ = 0 ,
∂L
∂y

= 2y − λ = 0 ,
∂L
∂λ

= −(x+ y − 1) = 0

Es conveniente recordar que la condición ∂L
∂λ = 0 no es más que g(x, y) = 0.

De las dos primeras ecuaciones se obtiene

x =
λ

2
, y =

λ

2

y sustituyendo en la restricción x+ y = 1 resulta λ = 1 Por tanto

x∗ = y∗ = 1
2

Este seŕıa el candidato a óptimo ya que cumple las condiciones necesarias.

Otro ejemplo

Consideremos el problema
max
x,y∈R

f(x, y) = x y

sujeto a h(x, y) = x2 + y2 − 1 = 0

El Lagrangiano es
L(x, y, λ) = x y − λ

(
x2 + y2 − 1

)
Las condiciones de primer orden son

∂L
∂x

= y − 2λx = 0 (2)

∂L
∂y

= x− 2λ y = 0 (3)

∂L
∂λ

= −(x2 + y2 − 1) = 0 (4)

De (2) y (3) se deduce

y = 2λx , x = 2λ y =⇒ (2λ)2 = 1 =⇒ λ = ± 1
2

Por la restricción x2 + y2 = 1 tenemos además

y = ±x , x = ± 1√
2

, y = ± 1√
2

Aśı, los puntos cŕıticos son (
1√
2
, 1√

2

)
,
(
− 1√

2
, − 1√

2

)
,
(

1√
2
, − 1√

2

)
,
(
− 1√

2
, 1√

2

)
Que seŕıan candidatos a máximos y mı́nimos.
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Ejemplo económico: Maximización de utilidad con restricción presupuestaria

Consideremos un consumidor que elige cantidades x1, x2 > 0 de dos bienes para maximizar su utilidad

u(x1, x2) = xα1x
1−α
2 , α ∈ (0, 1)

sujeto a su restricción presupuestaria
p1 x1 + p2 x2 =M

donde p1, p2 > 0 son los precios y M > 0 su ingreso
El Lagrangiano es

L(x1, x2, λ) = xα1x
1−α
2 + λ

(
M − p1x1 − p2x2

)
Las condiciones de primer orden son

∂L
∂x1

= αxα−1
1 x1−α

2 − λ p1 = 0 (5)

∂L
∂x2

= (1− α)xα1x
−α
2 − λ p2 = 0 (6)

∂L
∂λ

=M − p1x1 − p2x2 = 0 (7)

De (5) y (6) obtenemos
α

1− α

x2
x1

=
p1
p2

=⇒ x2 =
1− α

α

p1
p2
x1

Sustituyendo en (7) y resolviendo, se llega a las demandas óptimas

x∗1 =
αM

p1
, x∗2 =

(1− α)M

p2

Condiciones de segundo orden

Suponemos además que f y las gi son de clase C2 en un entorno de x∗.

Caso concreto: 2 variables independientes y una restricción

Sea
f : R2 → R, g : R2 → R, L(x, y, λ) = f(x, y) + λ g(x, y).

En un punto estacionario (x∗, y∗, λ∗) se cumplen las condiciones de primer orden:

∇f(x∗, y∗) = λ∗ ∇g(x∗, y∗), g(x∗, y∗) = 0.

Definimos las segundas derivadas de la función Lagrangiana L(x, y, λ) = f(x, y) + λ g(x, y) en el punto
cŕıtico (x∗, y∗, λ∗) como

∇2
(x,y,λ)L(x

∗, y∗, λ∗) =


Lxx Lxy Lxλ

Lyx Lyy Lyλ

Lλx Lλy Lλλ


(x∗,y∗,λ∗)

.
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Aqúı,
Lxx = fxx + λ∗ gxx, Lxy = fxy + λ∗ gxy,

Lyx = fyx + λ∗ gyx, Lyy = fyy + λ∗ gyy,

Lxλ = gx, Lyλ = gy,

Lλx = gx, Lλy = gy,

Lλλ = 0

Por tanto, al evaluar:

H̄ = ∇2
(x,y,λ)L(x

∗, y∗, λ∗) =


fxx + λ∗gxx fxy + λ∗gxy gx

fyx + λ∗gyx fyy + λ∗gyy gy

gx gy 0


(x∗,y∗,λ∗)

.

La submatriz central de orden 2×2 es precisamente las derivadas del lagrangiano con respecto a las variables
x, y, y los elementos gx, gy crean el “borde” que la convierte en el hessiano orlado.

Restricción lineal

Cuando las restricciones son lineales el hessiano orlado se simplifica aún más: Supongamos

g(x, y) = a x+ b y + c

con a, b, c constantes. Entonces:

� ∇g(x, y) = (gx, gy) = (a, b): las primeras derivadas gx = a, gy = b son constantes.

� Las segundas derivadas se anulan:

gxx =
∂

∂x
(gx) = 0, gxy =

∂

∂y
(gx) = 0, gyy =

∂

∂y
(gy) = 0

Por tanto,

H̄ = ∇2
(x,y,λ)L(x

∗, y∗, λ∗) =


fxx + λ∗gxx fxy + λ∗gxy gx

fyx + λ∗gyx fyy + λ∗gyy gy

gx gy 0


(x∗,y∗,λ∗)

.

los términos λ gjk desaparecen, y queda

H̄ = ∇2
(x,y,λ)L(x

∗, y∗, λ∗) =


fxx fxy gx

fyx fyy gy

gx gy 0


(x∗,y∗,λ∗)

.

Condiciones suficientes para máximo o mı́nimo

Sea en el punto cŕıtico (x∗, y∗, λ∗) el hessiano orlado

H̄(x∗, y∗, λ∗) =

 0 gx gy

gx fxx + λ∗gxx fxy + λ∗gxy

gy fyx + λ∗gyx fyy + λ∗gyy


(x∗,y∗,λ∗)

.
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Las condiciones suficientes para máximos y mı́nimos son:

det H̄(x∗, y∗, λ∗) > 0 =⇒ (x∗, y∗) es un máximo local sujeto a g = 0

det H̄(x∗, y∗, λ∗) < 0 =⇒ (x∗, y∗) es un mı́nimo local sujeto a g = 0

Condiciones suficientes: caso general

Sea
min
x∈Rn

f(x),

sujeto a gi(x) = 0, i = 1, . . . , k

o

max
x∈Rn

f(x),

sujeto a gi(x) = 0, i = 1, . . . , k

y sea el Lagrangiano

L(x, λ) = f(x) +

k∑
i=1

λi gi(x), λ = (λ1, . . . , λk)

Denotemos
∇g(x) =

(
∇g1(x) · · · ∇gk(x)

)
∈ Rn×k

Suponiendo que n > k (más variables independientes que restricciones). Entonces el hessiano orlado se define
como la matriz (k + n)× (k + n)

H̄(x, λ) =

(
0k×k ∇g(x)

∇g(x)T ∇2
xxL(x, λ)

)
Este hessiano orlado tiene asociado n + k menores principales de orden inicial pero solo basta con analizar
estos n− k últimos menores principales de orden inicial:

� Mı́nimo local: si los últimos menores principales de orden inicial (ĺıderes) tienen el signo de (−1)k.
Entonces x∗ es mı́nimo local sujeto a gi = 0.

� Máximo local: Si los signos de los menores principales de orden inicial (ĺıderes) se alternan terminando
en el signo de (−1)n entonces x∗ es máximo local sujeto a gi = 0.

Veamos ejemplos de esto:

En el caso de dos variables y una restricción, k = 1, n = 2 (analizado antes)

Solo tenemos que analizar 2− 1 = 1 menor principal de orden inicial:

� Mı́nimo local: si:
|H̄|

Tiene el signo de (−1)k = (−1)1 Es decir:
|H̄| < 0

� Máximo local: si:
|H̄|

Tiene el signo de (−1)n = (−1)2 Es decir:
|H| > 0
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En el caso de tres variables y una restricción, k = 1, n = 3

El hessiano orlado asociado es el siguiente:

H̄(x∗, y∗, z∗, λ∗) =


0 gx gy gz

gx fxx + λ∗ gxx fxy + λ∗ gxy fxz + λ∗ gxz

gy fyx + λ∗ gyx fyy + λ∗ gyy fyz + λ∗ gyz

gz fzx + λ∗ gzx fzy + λ∗ gzy fzz + λ∗ gzz


(x∗,y∗,z∗,λ∗)

Solo tenemos que analizar 3− 1 = 2 menores principales de orden inicial. Sean ∆1 y ∆2 los últimos dos
menores principales de orden inicial:

∆1 = det

 0 gx gy
gx fxx + λ∗ gxx fxy + λ∗ gxy
gy fyx + λ∗ gyx fyy + λ∗ gyy



∆2 = det


0 gx gy gz

gx fxx + λ∗ gxx fxy + λ∗ gxy fxz + λ∗ gxz

gy fyx + λ∗ gyx fyy + λ∗ gyy fyz + λ∗ gyz

gz fzx + λ∗ gzx fzy + λ∗ gzy fzz + λ∗ gzz


(x∗,y∗,z∗,λ∗)

� Mı́nimo local: si:
∆1,∆2

Tienen el mismo signo que (−1)k = (−1)1 es decir

∆1,∆2 < 0

� Máximo local: si:
∆1,∆2

Alternan el signo terminando con el signo de (−1)n = (−1)3 Es decir:

∆1 > 0

∆2 < 0

En el caso de tres variables y dos restricciones, k = 2, n = 3

El hessiano orlado asociado en (x∗, y∗, z∗, λ∗1, λ
∗
2) es

H̄(x∗, y∗, z∗, λ∗1, λ
∗
2) =



0 0 g1x g1y g1z

0 0 g2x g2y g2z

g1x g2x fxx + λ∗1 g1xx + λ∗2 g2xx fxy + λ∗1 g1xy + λ∗2 g2xy fxz + λ∗1 g1xz + λ∗2 g2xz

g1y g2y fyx + λ∗1 g1yx + λ∗2 g2yx fyy + λ∗1 g1yy + λ∗2 g2yy fyz + λ∗1 g1yz + λ∗2 g2yz

g1z g2z fzx + λ∗1 g1zx + λ∗2 g2zx fzy + λ∗1 g1zy + λ∗2 g2zy fzz + λ∗1 g1zz + λ∗2 g2zz


Solo tenemos que analizar (3− 2) = 1 menor principal de orden inicial es decir |H̄|.
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� Mı́nimo local: si:
|H̄|

Tiene el signo de (−1)k = (−1)2 Es decir:
|H̄| > 0

� Máximo local: si:
|H̄|

Tiene el signo de (−1)n = (−1)3 Es decir:
|H| < 0

Condiciones para máximos y mı́nimos globales y únicos

Al igual que en optimización no restringida es necesario especificar si la función es cóncava o convexa para
la existencia de un máximo o mı́nimo global, con la optimización restringida ocurre lo mismo. Sea

f : Rn −→ R

la función objetivo y sea
C =

{
x ∈ Rn : hj(x) = 0, j = 1, . . . , p

}
el conjunto factible.

Condiciones para máximo global y único

Si f es estrictamente cuasicóncava y el conjunto factible C es convexo, entonces cualquier óptimo local del
problema

max
x∈C

f(x)

es también óptimo global y único.

Condiciones para mı́nimo global y único

Si f es estrictamente cuasiconvexa y el conjunto factible C es convexo, entonces cualquier óptimo local del
problema

min
x∈C

f(x)

es también óptimo global y único.
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22 Aplicaciones económicas con optimización con restricciones de
igualdad

Interpretación del multiplicador de Lagrange

La interpretación del multiplicador de lagrange puede verse como el efecto que tiene relajar la restricción
sobre la función objetivo. El significado de “relajar” la restricción dependerá de si estamos maximizando o
minimizando. Para entender claramente vamos a ver un ejemplo de maximización de utilidad.

Consideremos un consumidor que elige x = (x1, x2) ∈ R2
+ para maximizar su utilidad sujeta a una

restricción presupuestaria lineal:

max
x≥0

u(x1, x2) s.a. p1x1 + p2x2 =M,

donde p = (p1, p2) ≫ 0 son los precios y M > 0 es el ingreso. Denotemos por

v(M,p) = u(x∗1, x
∗
2)

la utilidad indirecta. Usaremos la convención de Lagrangiano

L(x, λ;M,p) = u(x) + λ
(
M − p1x1 − p2x2),

Teorema de la envolvente (versión paramétrica)

Las condiciones de primer orden requieren que:

∂L
∂x1

(x1, x2, λ) = ux1
(x1, x2)− λ p1 = 0,

∂L
∂x2

(x1, x2, λ) = ux2(x1, x2)− λ p2 = 0,

∂L
∂λ

(x1, x2, λ) =M − p1x1 − p2x2 = 0.

El teorema de la envolvente indica que si buscamos derivar la función objetivo en el óptimo respecto a
un parámetro, podemos primero obtener la función de utilidad indirecta y después derivar o primero derivar
y después reemplazar por los valores de x1, x2 en el óptimo. Es decir, dado que tanto x1, como x2 y λ en el
óptimo dependeŕıan de M .

L(x1, x2, λ;M,p) = u(x1, x2) + λ (M − p1x1 − p2x2),

y evaluando a lo largo de la solución óptima (x∗1(M,p), x∗2(M,p), λ∗(M,p)), se tiene

d

dM
L
(
x∗1, x

∗
2, λ

∗;M,p
)
= L′

x1︸︷︷︸
0

dx∗1
dM

+ L′
x2︸︷︷︸
0

dx∗2
dM

+ L′
λ︸︷︷︸
0

dλ∗

dM
+ LM︸︷︷︸

=λ

.

Por las condiciones de primer orden en el óptimo,

L′
x1
(x∗1, x

∗
2, λ

∗;M,p) = 0, L′
x2
(x∗1, x

∗
2, λ

∗;M,p) = 0, L′
λ(x

∗
1, x

∗
2, λ

∗;M,p) = 0,

Entonces
d

dM
L
(
x∗1, x

∗
2, λ

∗;M,p
)
= LM (x∗1, x

∗
2, λ

∗;M,p) = λ∗(M,p) .

En particular, como en el óptimo la restricción se cumple con igualdad M − p1x
∗
1 − p2x

∗
2 = 0 , el

Lagrangiano evaluado en el óptimo coincide con la utilidad:

v(M,p) = u(x∗1, x
∗
2) = L(x∗1, x∗2, λ∗;M,p).

https://cabraljuan.github.io


Juan Andrés Cabral

La conclusión entonces es que

∂v(M,p)

∂M
=

∂L
∂M

∣∣∣
(x∗

1 ,x
∗
2 ,λ

∗;M,p)
= λ∗(M,p)

Es decir, λ∗ mide el cambio marginal de la utilidad óptima cuando se relaja la restricción presupuestaria
en una unidad, o sea, cuando se le da ingresos adicionales al individuo. Por eso λ∗ se interpreta como utilidad
marginal del ingreso. Esto puede ser útil ya que nos informa cómo cambia la utilidad si le brindamos al
individuo una unidad monetaria adicional.

Ejemplo

Datos: M = 100, p1 = 10, p2 = 20, u(x1, x2) = x21x
2
2.

max
x1,x2>0

x21x
2
2 s.a. 10x1 + 20x2 = 100, L(x1, x2, λ) = x21x

2
2 + λ (100− 10x1 − 20x2).

CPO
Lx1

= 2x1x
2
2 − 10λ = 0, Lx2

= 2x2x
2
1 − 20λ = 0, Lλ = 100− 10x1 − 20x2 = 0.

De las dos primeras:
2x1x

2
2

10
= λ =

2x2x
2
1

20
=⇒ 2x2 = x1.

Con la restricción:

10(2x2) + 20x2 = 100 =⇒ 40x2 = 100 =⇒ x∗2 = 2.5, x∗1 = 5.

v(100, 10, 20) = u(x∗1, x
∗
2) = 52 · 2.52 = 25 · 6.25 = 156.25.

Multiplicador lagrangiano

λ∗ =
2x∗1(x

∗
2)

2

10
=

2 · 5 · (2.5)2

10
=

10 · 6.25
10

= 6.25.

La interpretación es la siguiente: si aumentamos el ingreso en una unidad (manteniendo precios), la
utilidad óptima aumenta en aproximadamente 6.25 unidades. O sea la nueva utilidad seŕıa de 162.5

Ejemplo con minimización

El multiplicador de lagrange también puede interpretarse en el contexto de una minimización.
Datos: w1 = 10, w2 = 40, meta de producción = 100, tecnoloǵıa F (z1, z2) =

√
z1z2.

min
z1,z2>0

C = 10 z1 + 40 z2 s.a.
√
z1z2 = 100, L(z1, z2, µ) = 10z1 + 40z2 + µ (100−

√
z1z2).

CPO
Lz1 = 10− µ · 1

2 z
−1/2
1 z

1/2
2 = 0, Lz2 = 40− µ · 1

2 z
−1/2
2 z

1/2
1 = 0,

√
z1z2 = 100.

De las dos primeras:
10

40
=
z2
z1

=⇒ z2 =
1

4
z1.

Con la restricción: z1z2 = 1002 ⇒ z1
(
1
4z1
)
= 10,000 ⇒ z21 = 40,000 ⇒ z∗1 = 200, z∗2 = 50.
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Costo mı́nimo e interpretación de µ∗

Cmin = 10 · 200 + 40 · 50 = 2000 + 2000 = 4000.

µ∗ = 2
√
w1w2 = 2

√
10 · 40 = 40.

µ∗ = 40 nos indica que al relajar la restricción (es decir si en vez de exigir una producción de 100,
exigimos solo 99 unidades), el costo mı́nimo se reduce aproximadamente en 40. Por lo tanto el costo nuevo
seŕıa de 3960.
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23 Optimización con restricciones de desigualdad

Problema con una sola variable independiente

Consideremos el problema
max
x≥0

f(x), f ∈ C1(R).

Un punto x∗ es máximo local solo en una de estas dos situaciones:

� Interior: x∗ > 0 y f ′(x∗) = 0. Aqúı la restricción no interviene y se cumple la condición clásica de
primer orden.

� Frontera: x∗ = 0 y f ′(0) ≤ 0.

Obsérvese que f ′(0) > 0 no puede corresponder a un máximo, pues implicaŕıa pendiente creciente al
inicio de la región factible.

Gráficamente los casos son los siguientes: f ′(x) = 0 por lo que la restricción no está activa.

x

f(x)

0 1 2 3 4 5

-2

-1

1

2

3

f ′(x) = 0

Por otro lado f ′(x) < 0 implica que la restricción está activa: x = 0.

x

f(x)

-2 -1 0 1 2 3 4 5

-2

-1

1

2

3

x = 0

Y por último también es posible que sucedan las dos cosas al mismo tiempo: f ′(x) = 0 y x = 0.
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x

f(x)

0 1 2 3 4 5

-2

-1

1

2

3

f ′(x) = 0
x = 0

Estas condiciones anteriores pueden resumirse:

f ′(x) ≤ 0, x ≥ 0, x f ′(x) = 0.

De esas condiciones se deduce que necesariamente

x = 0 o f ′(x) = 0,

pues la última igualdad obliga a que al menos uno de los factores sea cero.

� x ≥ 0:

� f ′(x) ≤ 0:

� x f ′(x) = 0: holgura complementaria.

Minimización

Análogamente, para
min
x≥0

f(x),

las condiciones necesarias son
f ′(x) ≥ 0, x ≥ 0, x f ′(x) = 0,

Ejemplo

Consideremos el problema
max
x≥0

f(x), f(x) = −x2 − x− 1,

Caso 1: la restricción está inactiva (óptimo interior).
Si la restricción no actuase, existiŕıa un máximo interior x∗ > 0 y por lo tanto por la condición de holgura
complementaria xf ′(x) = 0 tenemos que:

f ′(x∗) = 0.

Pero
f ′(x) = −2x− 1,
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luego
−2x∗ − 1 = 0 =⇒ x∗ = − 1

2 ,

que contradice x∗ > 0. Por tanto no puede haber óptimo interior en la región factible.

Caso 2: la restricción está activa (óptimo en la frontera).
La única posibilidad restante es que x∗ = 0. Para verificar que es un máximo local basta comprobar la
condición de primer orden en la frontera:

f ′(0) = −2 · 0− 1 = −1 ≤ 0.

Conclusión: En este ejemplo la restricción x ≥ 0 está activa en el óptimo (x∗ = 0), y el valor óptimo es
f(0) = −1 < 0.

Gráficamente:

x

f(x)

O-2 -1 0 1 2 3 4 5

-4

-3

-2

-1

1

x∗ = 0

Problema con n variables independientes y restricciones de no neg-
atividad

Consideremos
max
x∈Rn

+

f(x1, . . . , xn), f ∈ C1(Rn),

es decir, sujeto a xj ≥ 0 para j = 1, . . . , n.
Las condiciones de primer orden adaptadas a estas restricciones son, para cada j = 1, . . . , n:

∂f

∂xj
≤ 0, xj ≥ 0, xj

∂f

∂xj
= 0,

Problema con tres variables y dos restricciones de desigualdad

Planteamos primero el problema en forma de desigualdades:

max
x1,x2,x3

f(x1, x2, x3)
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sujeto a 
g1(x1, x2, x3) ≤ r1,

g2(x1, x2, x3) ≤ r2,

x1, x2, x3 ≥ 0.

Al añadir las variables ficticias s1, s2 ≥ 0 podemos convertir cada desigualdad en una igualdad:
g1(x1, x2, x3) + s1 = r1,

g2(x1, x2, x3) + s2 = r2,

x1, x2, x3, s1, s2 ≥ 0.

Lagrangiano y condiciones de primer orden

A partir del problema con variables de holgura

max
x1,x2,x3,s1,s2

f(x1, x2, x3)

sujeto a g1(x1, x2, x3) + s1 = r1,

g2(x1, x2, x3) + s2 = r2,

xj ≥ 0 (j = 1, 2, 3), si ≥ 0 (i = 1, 2),

definimos el Lagrangiano

L(x, s, λ) = f(x1, x2, x3) + λ1
[
r1 − g1(x1, x2, x3)− s1

]
+ λ2

[
r2 − g2(x1, x2, x3)− s2

]
.

Aqúı λ1, λ2 ∈ R son los multiplicadores asociados a las igualdades.

Condiciones de primer orden

∂L
∂x1

= f1(x)− λ1 g
1
1(x)− λ2 g

2
1(x) ≤ 0, x1 ≥ 0, x1

∂L
∂x1

= 0,

∂L
∂x2

= f2(x)− λ1 g
1
2(x)− λ2 g

2
2(x) ≤ 0, x2 ≥ 0, x2

∂L
∂x2

= 0,

∂L
∂x3

= f3(x)− λ1 g
1
3(x)− λ2 g

2
3(x) ≤ 0, x3 ≥ 0, x3

∂L
∂x3

= 0,

∂L
∂s1

= −λ1 ≤ 0, s1 ≥ 0, s1
∂L
∂s1

= 0,

∂L
∂s2

= −λ2 ≤ 0, s2 ≥ 0, s2
∂L
∂s2

= 0,

∂L
∂λ1

= r1 − g1(x1, x2, x3)− s1 = 0,

∂L
∂λ2

= r2 − g2(x1, x2, x3)− s2 = 0.

Eliminación de las variables ficticias de las condiciones de primer orden
Tomemos la condición respecto a un multiplicador de lagrange:

∂L
∂λi

= ri − gi(x1, x2, x3)− si = 0,
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se despeja inmediatamente
si = ri − gi(x1, x2, x3), i = 1, 2.

Ahora sustituimos si en las tres condiciones

∂L
∂si

≤ 0, si ≥ 0, si
∂L
∂si

= 0,

recordando que ∂L/∂si = −λi. Obtenemos:

−λi ≤ 0 =⇒ λi ≥ 0,

ri − gi(x1, x2, x3) ≥ 0(
ri − gi(x1, x2, x3)

) (
−λi

)
= 0 =⇒ λi (ri − gi(x1, x2, x3)) = 0.

En consecuencia, las condiciones de Kuhn-Tucker quedan:

∂L
∂xj

≤ 0,

xj ≥ 0,

xj
∂L
∂xj

= 0

(j = 1, 2, 3)


ri − gi(x1, x2, x3) ≥ 0,

λi ≥ 0,

λi
[
ri − gi(x1, x2, x3)

]
= 0

(i = 1, 2)

Véase que ri − gi(x1, x2, x3) coincide con la derivada del lagrangiano sin incluir las variables ficticias
si. Entonces podemos expresar las condiciones de la siguiente manera:

∂L
∂xj

≤ 0, xj ≥ 0, xj
∂L
∂xj

= 0,

∂L
∂λi

≥ 0, λi ≥ 0, λi
∂L
∂λi

= 0,

Resumen de las condiciones

Sea

L(x, λ) = f(x1, . . . , xn) +

k∑
i=1

λi
[
ri − gi(x1, . . . , xn)

]
el Lagrangiano asociado a

max
x∈Rn

+

f(x) sujeto a gi(x) ≤ ri (i = 1, . . . , k)

donde
Rn

+ = {x ∈ Rn : xj ≥ 0 ∀j = 1, . . . , n}

Las condiciones de Kuhn–Tucker para un máximo son
∂L

∂xj
≤ 0, xj ≥ 0, xj

∂L

∂xj
= 0 j = 1, . . . , n

∂L

∂λi
≥ 0, λi ≥ 0, λi

∂L

∂λi
= 0 i = 1, . . . , k
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Condiciones Kuhn-Tucker generales para un mı́nimo

Sea

L(x, λ) = f(x1, . . . , xn) +

k∑
i=1

λi
[
ri − gi(x1, . . . , xn)

]
el Lagrangiano asociado a

min
x∈Rn

+

f(x) sujeto a gi(x) ≥ ri (i = 1, . . . , k)

donde
Rn

+ = {x ∈ Rn : xj ≥ 0 ∀j = 1, . . . , n}

Las condiciones de Kuhn–Tucker necesarias para un mı́nimo son
∂L

∂xj
≥ 0, xj ≥ 0, xj

∂L

∂xj
= 0 j = 1, . . . , n

∂L

∂λi
≤ 0, λi ≥ 0, λi

∂L

∂λi
= 0 i = 1, . . . , k

Ejemplo maximización

Consideremos

max
x,y

U(x, y) = xy sujeto a


x+ y ≤ 100,

x ≤ 40,

x ≥ 0, y ≥ 0.

Asignamos multiplicadores λ1, λ2 ≥ 0 a las dos primeras desigualdades y construimos el Lagrangiano

L(x, y, λ1, λ2) = xy + λ1
(
100− x− y

)
+ λ2

(
40− x

)
.

Las condiciones de Kuhn-Tucker se agrupan en:

∂L
∂x

= y − λ1 − λ2 ≤ 0, x ≥ 0, x
(
y − λ1 − λ2

)
= 0,

∂L
∂y

= x− λ1 ≤ 0, y ≥ 0, y
(
x− λ1

)
= 0,

∂L
∂λ1

= 100− x− y ≥ 0, λ1 ≥ 0, λ1
(
100− x− y

)
= 0,

∂L
∂λ2

= 40− x ≥ 0, λ2 ≥ 0, λ2
(
40− x

)
= 0.

Analizando las regiones:
En el óptimo x∗, y∗ > 0 ya que de lo contrario la utilidad seŕıa 0, entonces las dos primeras desigualdades se
vuelven igualdades (por las condiciones de holgura complementaria)

y∗ − λ1 − λ2 = 0, x∗ − λ1 = 0.

Analizando las regiones, consideremos las cuatro combinaciones posibles de λ1 y λ2:

Caso 1: λ1 = 0, λ2 = 0.
Entonces

∂L
∂x

= y ≤ 0,
∂L
∂y

= x ≤ 0 =⇒ x = y = 0,

con x, y ≥ 0. Esto da U = 0, no es máximo interior con U > 0. (Descartado.)
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Caso 2: λ1 > 0, λ2 = 0.
Por holgura complementaria en x, y > 0:

y − λ1 = 0, x− λ1 = 0 =⇒ x = y = λ1,

y por la restricción activa x+ y = 100:

2λ1 = 100 ⇒ x = y = 50,

pero viola x ≤ 40. (Descartado.)

Caso 3: λ1 = 0, λ2 > 0.
Holgura complementaria obliga

40− x = 0 ⇒ x = 40,

Y yendo a la segunda condición tenemos: x − λ1 = 0. Pero como λ1 = 0 y x = 40, esta condición no
se cumple. (Descartado.)

Caso 4: λ1 > 0, λ2 > 0.
Ambas restricciones activas:

x+ y = 100, x = 40 =⇒ (x, y) = (40, 60).

De las derivadas:

x− λ1 = 0 ⇒ λ1 = 40, y − λ1 − λ2 = 0 ⇒ λ2 = 20 > 0,

todo consistente. x∗ = 40, y∗ = 60, U = 2400.

Ejemplo minimización

Consideremos el problema

min
x1,x2

C(x1, x2) = (x1 − 4)2 + (x2 − 4)2

sujeto a 
2x1 + 3x2 ≥ 6,

−3x1 − 2x2 ≥ −12,

x1 ≥ 0, x2 ≥ 0.

Reescribimos las dos primeras como

g1(x) ≡ 6− 2x1 − 3x2 ≤ 0, g2(x) ≡ 3x1 + 2x2 − 12 ≤ 0,

y asignamos multiplicadores λ1, λ2 ≥ 0. El Lagrangiano es

L = (x1 − 4)2 + (x2 − 4)2 + λ1 (6− 2x1 − 3x2) + λ2 (3x1 + 2x2 − 12).

Condiciones de Kuhn-Tucker

∂L
∂x1

= 2(x1 − 4) − 2λ1 + 3λ2 ≥ 0, x1 ≥ 0, x1
[
2(x1 − 4)− 2λ1 + 3λ2

]
= 0,

∂L
∂x2

= 2(x2 − 4) − 3λ1 + 2λ2 ≥ 0, x2 ≥ 0, x2
[
2(x2 − 4)− 3λ1 + 2λ2

]
= 0,

g1(x) = 6− 2x1 − 3x2 ≤ 0, λ1 ≥ 0, λ1 (6− 2x1 − 3x2) = 0,

g2(x) = 3x1 + 2x2 − 12 ≤ 0, λ2 ≥ 0, λ2 (3x1 + 2x2 − 12) = 0.
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Análisis de casos Primero pensemos el caso de (4, 4) que dada la función de costos puede ser un potencial
óptimo. Sin embargo, (4, 4) viola g2. Por lo que vamos a analizar los otros casos posibles, suponiendo que
x1 > 0 y x2 > 0

x1 > 0 =⇒ ∂L
∂x1

= 0, x2 > 0 =⇒ ∂L
∂x2

= 0,

y de que las dos restricciones pueden estar activas o inactivas. Hay cuatro combinaciones de λ1, λ2 ≥ 0:

Caso 1: λ1 = 0, λ2 = 0.
De la derivada con respecto a x1: 2(x1 − 4) = 0 ⇒ x1 = 4 y 2(x2 − 4) = 0 ⇒ x2 = 4. Pero la segunda
restricción 3x1 + 2x2 ≤ 12 se viola (20 > 12). Descartado.

Caso 2: λ1 > 0, λ2 = 0.
De las condiciones obtenemos que:

2(x1 − 4)− 2λ1 = 0
(
x1 = 4 + λ1

)
, 2(x2 − 4)− 3λ1 = 0

(
x2 = 4 + 3

2λ1
)
.

Además, λ1 > 0 implica 2x1 + 3x2 = 6, que no admite λ1 > 0. Descartado.

Caso 3: λ1 = 0, λ2 > 0.

2(x1 − 4) + 3λ2 = 0 ⇒ x1 = 4− 3
2λ2,

2(x2 − 4) + 2λ2 = 0 ⇒ x2 = 4− λ2,

y λ2 > 0 obliga 3x1 + 2x2 = 12. Resolviendo:

x1 =
28

13
, x2 =

36

13
, λ2 =

16

13
> 0.

Se verifica 6− 2x1 − 3x2 < 0 (la primera restricción es inactiva). Solución válida.

Caso 4: λ1 > 0, λ2 > 0.
Ambas restricciones activas:

2x1 + 3x2 = 6, 3x1 + 2x2 = 12 =⇒ (x1, x2) = (245 ,−
6
5 ),

que viola x2 ≥ 0. Descartado.

Por tanto, el único caso factible es λ1 = 0, λ2 = 16
13 , con

(x∗1, x
∗
2) =

(
28
13 ,

36
13

)
.

Ejemplo sin restricciones de no negatividad{
min f(x, y) = (x− 1)4 + ey

s. a. 2x+ y ≤ 5
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Problema de minimización propuesto

Consideremos el siguiente problema de optimización con restricción de desigualdad:

min
x,y

f(x, y) = (x− 1)4 + ey

sujeto a
−2x− y ≥ −5.

Notemos que la restricción puede reescribirse como

−2x− y + 5 ≥ 0.

Para usar las condiciones de Kuhn–Tucker en la forma estándar g(x, y) ≤ 0, definimos

g(x, y) ≡ (2x+ y − 5) ≤ 0.

Esta g(x, y) ≤ 0 es algebraicamente la misma que la restricción original −2x − y ≥ −5, sólo escrita al otro
lado. Vamos a trabajar con g(x, y) para construir el Lagrangiano, pero cuando verifiquemos factibilidad
siempre vamos a chequear la forma original

−2x− y ≥ −5.

Introducimos el multiplicador de Kuhn–Tucker λ ≥ 0. El Lagrangiano es

L(x, y, λ) = (x− 1)4 + ey + λ
(
2x+ y − 5

)
.

Condiciones de Kuhn–Tucker Las condiciones KKT (necesarias y, como veremos, suficientes) son:

(1) Estacionariedad:
∂L
∂x

= 4(x− 1)3 + 2λ = 0,

∂L
∂y

= ey + λ = 0,

(2) Factibilidad primal: −2x− y ≥ −5,

(3) Factibilidad dual: λ ≥ 0,

(4) Holgura complementaria: λ
(
2x+ y − 5

)
= 0.

Observación importante: En el Lagrangiano usamos 2x+ y − 5, pero la factibilidad primal la seguimos
expresando en la forma original −2x− y ≥ −5, es decir, “mayor o igual a un número”.

Análisis de casos Vamos a estudiar las dos posibilidades para λ.

Caso 1: λ = 0

Si λ = 0, las ecuaciones de estacionariedad quedan:

4(x− 1)3 + 0 = 0 =⇒ (x− 1)3 = 0 =⇒ x = 1,

y
ey + 0 = 0 =⇒ ey = 0,

lo cual es imposible porque ey > 0 para todo y. Por lo tanto, λ = 0 no puede describir el óptimo.
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Caso 2: λ > 0

Si λ > 0, por holgura complementaria debe cumplirse

2x+ y − 5 = 0 =⇒ y = 5− 2x.

Usamos estacionariedad otra vez. De

∂L
∂y

= ey + λ = 0 =⇒ λ = − ey.

Como λ > 0, esto nos dice que −ey > 0, lo cual seŕıa imposible. Esto sugiere que, con el Lagrangiano escrito
como

L(x, y, λ) = f(x, y) + λ(2x+ y − 5),

el signo de λ que hace que KKT funcione debe ser λ ≤ 0 si usamos 2x+ y − 5 directamente.
Para evitar esa inconsistencia de signos, es más cómodo (y estándar) definir la restricción negada en el

Lagrangiano, tal como se hizo en el ejemplo anterior:
Reescribimos:

g(x, y) ≡ 5− 2x− y ≤ 0,

que es exactamente la misma restricción original −2x − y ≥ −5, sólo movida de lado. Ahora tomamos el
Lagrangiano en la forma

L̃(x, y, λ) = (x− 1)4 + ey + λ
(
5− 2x− y

)
, λ ≥ 0.

Volvemos a plantear las KKT con esta versión (que es la convención usual y evita el problema de signo):

(1) Estacionariedad:
∂L̃
∂x

= 4(x− 1)3 − 2λ = 0,

∂L̃
∂y

= ey − λ = 0,

(2) Factibilidad primal (forma original): −2x− y ≥ −5,

(3) Factibilidad dual: λ ≥ 0,

(4) Holgura complementaria: λ
(
5− 2x− y

)
= 0.

Ahora śı, analizamos casos con esta L̃.

Caso A: λ = 0

Si λ = 0, de estacionariedad:
4(x− 1)3 − 0 = 0 =⇒ x = 1.

Y
ey − 0 = 0 =⇒ ey = 0,

imposible. Por lo tanto, λ = 0 sigue sin ser factible.

Caso B: λ > 0

Si λ > 0, por holgura complementaria la restricción está activa:

5− 2x− y = 0 =⇒ y = 5− 2x.

De ∂L̃
∂y = 0:

ey − λ = 0 =⇒ λ = ey = e 5−2x.
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De ∂L̃
∂x = 0:

4(x− 1)3 − 2λ = 0 =⇒ 2(x− 1)3 = λ.

Igualando las dos expresiones de λ:

2(x− 1)3 = e 5−2x.

Esa ecuación determina el x óptimo. Resolviéndola numéricamente:

x∗ ≈ 2.0625.

Luego
y∗ = 5− 2x∗ ≈ 5− 2(2.0625) ≈ 0.8750.

Y el multiplicador
λ∗ = ey

∗
≈ e0.8750 ≈ 2.3989 > 0,

consistente con la hipótesis λ > 0.
Ahora verificamos la factibilidad en la forma original de la restricción:

−2x∗ − y∗ ≈ −2(2.0625)− 0.8750 ≈ −5.0000 ≥ −5.

Se cumple exactamente como igualdad: estamos sobre la frontera −2x− y = −5, es decir, “mayor o igual a
−5”.

El valor de la función objetivo en (x∗, y∗) es

f(x∗, y∗) = (x∗ − 1)4 + ey
∗

≈ (2.0625− 1)4 + e0.8750 ≈ 3.6733.

Condiciones suficientes para mı́nimo global La función objetivo

f(x, y) = (x− 1)4 + ey

es convexa: (x− 1)4 es convexa en x, y ey es convexa en y; la suma de convexas es convexa.
El conjunto factible definido por

−2x− y ≥ −5

es un semiespacio af́ın (una región descrita por una desigualdad lineal), por lo tanto es convexo.
En un problema de minimización convexa con restricciones convexas (aqúı lineales), cualquier punto

que satisface KKT es óptimo global.
Como encontramos (x∗, y∗) ≈ (2.0625, 0.8750) con λ∗ > 0 que satisface:

−2x∗ − y∗ ≥ −5, y todas las condiciones KKT,

concluimos que
(x∗, y∗) ≈ (2.0625, 0.8750)

es el minimizador global del problema original con la restricción escrita en la forma

−2x− y ≥ −5.

Condiciones suficientes

Como en el caso de optimización con restricciones y optimización libre, las condiciones suficientes van a estar
asociadas a la concavidad de las funciones analizadas. Vamos a ver dos tipos de condiciones, una sobre
concavidad y convexidad y otra más débil sobre cuasiconcavidad y cuasiconvexidad.
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Condiciones suficientes para máximo (y global)

Supongamos que el problema a resolver es:

Maximizar f(x)

sujeto a gi(x) ≤ ri (i = 1, 2, . . . , k),

x ≥ 0.

Con x = (x1, x2, ...) Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las
siguientes condiciones en un punto x∗

1. La función objetivo f(x) es diferenciable y cóncava en el cuadrante n-dimensional no negativo.

2. Cada función de restricción gi(x) es diferenciable y convexa en el cuadrante n-dimensional no negativo.

Entonces x∗ da un máximo global de f(x).
Existe un teorema asociado a condiciones más débiles para poder determinar que estamos ante un

máximo, estas están asociados a la cuasiconcavidad y cuasiconvexidad de las funciones:

Teorema de Arrow-Enthoven para máximo

Supongamos que el problema a resolver es:

Maximizar f(x)

sujeto a gi(x) ≤ ri (i = 1, 2, . . . , k),

x ≥ 0.

Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las siguientes condiciones en
un punto x∗

1. La función objetivo f(x) es diferenciable y cuasiconcava en el cuadrante n-dimensional no negativo.

2. Cada función de restricción gi(x) es diferenciable y cuasiconvexa en el cuadrante n-dimensional no
negativo.

3. Se satisface cualquiera de los siguientes:

(a) fj(x
∗) < 0 para al menos una variable xj .

(b) fj(x
∗) > 0 para alguna variable xj relevante, esto quiere decir una variable que en el conjunto

factible (que cumpla con las restricciones), esa variable tome un valor positivo.

(c) Las n derivadas fj(x
∗) no son todas cero, y la función f(x) es dos veces diferenciable en la vecindad

de x∗ (es decir, todas las derivadas parciales de segundo orden de f(x) existen para x∗).

(d) La función f(x) es cóncava.

Entonces x∗ da un máximo global de f(x).

Condiciones suficientes para mı́nimo (y global)

Supongamos que el problema a resolver es:

Minimizar f(x)

sujeto a gi(x) ≥ ri (i = 1, 2, . . . , k),

x ≥ 0.

Con x = (x1, x2, ...) Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las
siguientes condiciones en un punto x∗
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1. La función objetivo f(x) es diferenciable y convexa en el cuadrante n-dimensional no negativo.

2. Cada función de restricción gi(x) es diferenciable y cóncava en el cuadrante n-dimensional no negativo.

Entonces x∗ da un mı́nimo global de f(x).

Teorema de Arrow-Enthoven para mı́nimo

Supongamos que el problema a resolver es:

Minimizar f(x)

sujeto a gi(x) ≥ ri (i = 1, 2, . . . , k),

x ≥ 0.

Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las siguientes condiciones en
un punto x∗

1. La función objetivo f(x) es diferenciable y cuasiconvexa en el cuadrante n-dimensional no negativo.

2. Cada función de restricción gi(x) es diferenciable y cuasicóncava en el cuadrante n-dimensional no
negativo.

3. Se satisface cualquiera de los siguientes:

(a) fj(x
∗) > 0 para al menos una variable xj .

(b) fj(x
∗) < 0 para alguna variable xj relevante, esto quiere decir una variable que en el conjunto

factible (que cumpla con las restricciones), esa variable tome un valor positivo.

(c) Las n derivadas fj(x
∗) no son todas cero, y la función f(x) es dos veces diferenciable en la vecindad

de x∗ (es decir, todas las derivadas parciales de segundo orden de f(x) existen para x∗).

(d) La función f(x) es convexa.

Entonces x∗ da un mı́nimo global de f(x).

Ejemplo

Volvamos a este ejemplo
min
x1,x2

C(x1, x2) = (x1 − 4)2 + (x2 − 4)2

sujeto a 2x1 + 3x2 ≥ 6,

− 3x1 − 2x2 ≥ −12,

x1 ≥ 0, x2 ≥ 0.

El potencial óptimo es x1 = 28/13, x2 = 36/13. Vamos a chequear las condiciones de segundo orden con el
teorema de Arrow-Enthoven. La función objetivo en este caso es convexa por lo tanto es cuasiconvexa:

H(x1, x2) =

[
2 0
0 2

]
.

∆1 = 2 > 0, ∆2 = det

[
2 0
0 2

]
= 4 > 0

Por otro lado, las funciones de las restricciones son lineales con lo cual son cóncavas y convexas y por
lo tanto son cuasicóncavas y cuasiconvexas. Por último, evaluamos una de las 4 condiciones de como por
ejemplo: fj(x

∗) < 0, para algún xj que tome un valor positivo en el óptimo:
Chequeando:

C ′
x1

= 2(x∗1 − 4) < 0

Esto implica que el óptimo es mı́nimo global.
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24 Temas adicionales de optimización

Calificación de las restricciones

Anteriormente cuando calculamos las condiciones de primer orden para máximos y mı́nimos argumentamos
que estas son necesarias para obtener un punto óptimo. Sin embargo, existen casos donde por la naturaleza de
las restricciones, las condiciones de primer orden dejan de ser válidas tanto para optimización con restricciones
de igualdad como optimización con restricciones de desigualdad. Véase el siguiente ejemplo:

Consideremos el problema de maximizar f(x, y) = x sujeto a la restricción definida por

h(x, y) = x3 + y2 = 0.

Armamos el lagrangiano:

L(x, y, λ) = f(x, y) + λ [−h(x, y)] = x+ λ(−x3 − y2).

El sistema de ecuaciones que debemos resolver es:

∂L

∂x
= 1− 3λx2 = 0,

∂L

∂y
= −2λy = 0,

∂L

∂λ
= −(x3 + y2) = 0.

De
∂L

∂y
= 0 se sigue que λ = 0 o y = 0.

Caso 1: λ = 0. Entonces la primera ecuación da 1− 3 · 0 · x2 = 1 = 0, que es imposible. Por lo tanto,
λ ̸= 0.

Caso 2: Como λ ̸= 0, debe ser y = 0. La tercera ecuación impone x3 + y2 = 0 ⇒ x3 = 0 ⇒ x = 0.
Sustituyendo x = 0 en la primera ecuación:

1− 3λx2 = 1− 3λ · 0 = 1 = 0,

nueva contradicción.
En ambos casos se arriba a una contradicción; por ende, el sistema no tiene solución.
Sin embargo el problema śı cuenta con un óptimo que es (0, 0). Esto puede verse gráficamente. Grafi-

cando la restricción:

x

y

Como estamos maximizando una función que es f(x, y) = x, el punto óptimo se encuentra lo más al este
posible pero que cumpla al mismo tiempo con la restricción, ese punto es el (0, 0).

Veamos otro ejemplo pero con restricciones de desigualdad:
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max
x1,x2

f = x1

s.a.


x2 − (1− x1)

3 ≤ 0,

x1 ≥ 0,

x2 ≥ 0.

L(x1, x2, λ1) = x1 + λ
[
x2 − (1− x1)

3
]

Este problema como el anterior puede ser resuelto gráficamente graficando la restricción:

x1

x2

El resultado es que el punto óptimo resulta ser: (1, 0). Sin embargo si chequeamos las condiciones de
primer orden, en particular la primera:

∂L
∂x1

= 1 + 3λ(1− x1)
2 ≤ 0

Si x1 = 1 tenemos:
∂L
∂x1

= 1 ≤ 0

Lo cual es contradictorio, nuevamente lo que sucede es que las restricciones de este problema dejan sin
efecto las condiciones necesarias. El problema que pueden generar estos casos ”patológicos” es que a veces
las restricciones no permiten la tangencia entre las curvas de nivel de la restricción y curvas de nivel de
la función objetivo entre otras cosas. La forma de resolver este problema es requerir que el conjunto de
restricciones cumpla con ciertas condiciones. Por ejemplo, si las restricciones fueran todas lineales, no habŕıa
problema, o si el problema fuera de maximización y las restricciones fueran todas convexas tampoco habŕıa
problema. Un resumen de las condiciones de calificación puede verse a continuación:

Teoremas de calificación de restricciones para máximos

Sea f, g1, . . . , gk y supóngase que x∗ ∈ Rn es un máximo local de f sobre el conjunto definido por las
restricciones

g1(x) ≤ r1, . . . , gk(x) ≤ rk.

Para simplificar la notación, supóngase que g1, . . . , gh son las restricciones activas en x∗, y que gh+1, . . . , gk
no lo son. Supóngase que las funciones de restricción activas satisfacen una de las siguientes propiedades:

(a) La matriz jacobiana de las restricciones activas es(
∂gi
∂xj

(x∗)

)
, i = 1, . . . , h, j = 1, . . . , n.

Los gradientes de las restricciones activas son linealmente independientes en x∗, es decir, generan un
subespacio de dimensión igual al número de restricciones activas.
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(b) g1, . . . , gh son funciones convexas.

(c) g1, . . . , gh son funciones lineales.

Entonces, podemos aplicar las condiciones de primer orden sin problemas.

Teoremas de calificación de restricciones para mı́nimos

Sea f, g1, . . . , gk y supóngase que x∗ ∈ Rn es un mı́nimo local de f sobre el conjunto definido por las
restricciones

g1(x) ≥ r1, . . . , gk(x) ≥ rk.

Para simplificar la notación, supóngase que g1, . . . , gh son las restricciones activas en x∗, y que gh+1, . . . , gk
no lo son. Supóngase que las funciones de restricción activas satisfacen una de las siguientes propiedades:

(a) La matriz jacobiana de las restricciones activas es(
∂gi
∂xj

(x∗)

)
, i = 1, . . . , h, j = 1, . . . , n.

Los gradientes de las restricciones activas son linealmente independientes en x∗, es decir, generan un
subespacio de dimensión igual al número de restricciones activas.

(b) g1, . . . , gh son funciones cóncavas.

(c) g1, . . . , gh son funciones lineales.

Entonces, podemos aplicar las condiciones de primer orden sin problemas.

Volviendo con el ejemplo anterior, podemos ver que no hay independencia lineal en el gradiente de las
restricciones ya que estos son:

Consideremos las restricciones en forma estándar gi(x1, x2) ≤ 0:

g1(x1, x2) = x2 − (1− x1)
3,

g2(x1, x2) = −x1,
g3(x1, x2) = −x2.

El punto candidato al óptimo es x∗ = (1, 0). Evaluamos cuáles restricciones son activas:

g1(1, 0) = 0, g2(1, 0) = −1 < 0, g3(1, 0) = 0.

Por lo tanto, las restricciones activas son g1 y g3.

Calculamos los gradientes:

∇g1(x1, x2) =
(
∂g1
∂x1

,
∂g1
∂x2

)
=
(
3(1− x1)

2, 1
)
,

∇g2(x1, x2) = (−1, 0), ∇g3(x1, x2) = (0, −1).

Evaluando en x∗ = (1, 0):

∇g1(1, 0) = (0, 1), ∇g3(1, 0) = (0, −1).

Se observa que
∇g3(1, 0) = −∇g1(1, 0),

por lo que los gradientes de las restricciones activas no son linealmente independientes en x∗.
En consecuencia, la condición de independencia lineal de gradientes no se cumple en este punto. Tam-

poco se cumplen que las restricciones sean convexas ni lineales y por esa razón las condiciones de primer
orden dejan de ser válidas.
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25 Apéndice sobre Álgebra

Determinantes

Idea general

Para una matriz cuadrada A ∈ Rn×n, el determinante det(A) es un número que mide, entre otras cosas, el
factor de cambio de volumen de la transformación lineal asociada, y nos permite saber si A es invertible

A es invertible ⇐⇒ det(A) ̸= 0

Para una intuición gráfica del determinante ver el video “El determinante” de 3Blue1Brown. Este
apartado se reduce solamente al cálculo del mismo.

Fórmulas básicas

En el caso de una matriz 2× 2:

A =

(
a b
c d

)
,

det(A) = ad− bc

Para el caso más sencillo de una matriz 2× 2 el determinante se calcula a través de multiplicar los elementos
de una diagonal y restarlos por el producto de la otra.

Sea A =

(
2 3
4 5

)
. Entonces

det(A) = 2 · 5− 3 · 4 = 10− 12 = −2

Para el caso de una matriz 3× 3
Podemos calcular a través de dos métodos diferentes:

Regla de Sarrus

Para A =

a b c
d e f
g h i

, duplicamos las dos primeras filas debajo para formar la matriz expandida:


a b c
d e f
g h i
a b c
d e f


Las tres diagonales descendentes (↘) se suman y las tres ascendentes (↗) se restan. En notación de

entradas aij y también con letras:

suman: aei, bfg, cdh

restan: ceg, afh, bdi

Por lo tanto

det(A) = aei+ bfg + cdh− ceg − afh− bdi
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Ejemplo

A =

1 2 3
0 −1 4
2 1 0


Duplicamos las dos primeras filas debajo para formar la matriz expandida

1 2 3
0 −1 4
2 1 0
1 2 3
0 −1 4


Las diagonales descendentes ↘ se suman y las ascendentes ↗ se restan

suman: 1 · (−1) · 0, 2 · 4 · 2, 3 · 0 · 1

restan: 3 · (−1) · 2, 1 · 4 · 1, 2 · 0 · 0

Por lo tanto

det(A) = 1 · (−1) · 0 + 2 · 4 · 2 + 3 · 0 · 1− 3 · (−1) · 2− 1 · 4 · 1− 2 · 0 · 0 = 18

A través de los cofactores (Laplace)

Sea A = [aij ]. Para cada entrada aij , definimos su menor Mij como el determinante de la submatriz que se
obtiene al borrar la fila i y la columna j. El cofactor es

Cij = (−1)i+j Mij

Con estos cofactores, podemos expandir por cualquier fila i o columna j

det(A) =

n∑
j=1

aij Cij

Veamos cómo hacerlo con una matriz 3× 3 aunque este método sirve para matrices cuadradas de cualquier
dimensión.

Tomemos

A =

a b c
d e f
g h i


Cofactor asociado al elemento a = a11 Su menor se obtiene borrando la fila 1 y la columna 1, quedando
la submatriz en rojo

A =

a b c
d e f
g h i


M11 = det

((
e f
h i

))
= ei− fh

Como 1 + 1 es par, el cofactor es positivo

C11 = (−1)1+1M11 = ei− fh

https://cabraljuan.github.io


Juan Andrés Cabral

Cofactor asociado al elemento b = a12 Ahora borramos la fila 1 y la columna 2, y el menor queda

A =

a b c
d e f
g h i


M12 = det

((d f
g i

))
= di− fg

Como 1 + 2 es impar, el cofactor cambia de signo

C12 = (−1)1+2M12 = −(di− fg) = fg − di

Cofactor asociado al elemento c = a13 Borrando la fila 1 y la columna 3

A =

a b c
d e f
g h i


M13 = det

((d e
g h

))
= dh− eg

Y como 1 + 3 es par
C13 = (−1)1+3M13 = dh− eg

Expansión de Laplace por la primera fila La expansión det(A) = aC11 + bC12 + cC13 se ve, con
nuestros colores, aśı

det(A) = C11 a+ C12 b+ C13 c

es decir
det(A) = a (ei− fh) + b (fg − di) + c (dh− eg)

De esta forma podemos calcular el determinante de una matriz tomando cualquier fila o columna de la
misma y aplicando la expansión de Laplace. Una recomendación es siempre intentar elegir la fila o columna
con mayor cantidad de ceros de tal forma de anular varios términos al escribir la expansión.

Ejemplo

Calculemos det(A) expandiendo por la primera columna

A =

2 0 3
1 4 −1
0 2 5


Término con a11 = 2 Borramos fila 1 y columna 1. El menor es el determinante de la submatriz en rojo

A =

2 0 3
1 4 −1
0 2 5

 M11 = det

(
4 −1
2 5

)
= 4 · 5− (−1) · 2 = 22

C11 = (−1)1+1M11 = 22 aporte = a11 C11 = 2 · 22 = 44
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Término con a21 = 1 Borramos fila 2 y columna 1

A =

2 0 3
1 4 −1
0 2 5

 M21 = det

(
0 3
2 5

)
= 0 · 5− 3 · 2 = −6

C21 = (−1)2+1M21 = −(−6) = 6 aporte = a21 C21 = 1 · 6 = 6

Término con a31 = 0 Aporta 0, pero mostramos su menor para completar la idea

A =

2 0 3
1 4 −1
0 2 5

 M31 = det

(
0 3
4 −1

)
= 0 · (−1)− 3 · 4 = −12

C31 = (−1)3+1M31 = −12 aporte = a31 C31 = 0 · (−12) = 0

Suma de aportes
det(A) = a11C11 + a21C21 + a31C31 = 44 + 6 + 0 = 50

Multiplicación de matrices

Dados A ∈ Rm×n y B ∈ Rn×p, definimos el producto C = AB ∈ Rm×p por

cij =

n∑
k=1

aik bkj

Solo podemos multiplicar matrices cuando el número de columnas de A coincide con el número de filas de
B. En caso contrario, el producto no está definido. El resultado final es una matriz con la cantidad de filas
de A y la cantidad de columnas de B.

Intuición

� Fila por columna: cij es el producto punto de la fila i de A con la columna j de B.4

Una forma de entender el procedimiento es que para cada elemento de fila i y columna j de la matriz final va
a estar implicada la fila i de la primera matriz y la columna j de la segunda matriz.

Ejemplo

Sea

A =

(
2 −1 0
1 3 2

)
, B =

1 4
0 −1
2 5


Calculamos C = AB ∈ R2×2 por fila por columna

c11 = (2)(1) + (−1)(0) + (0)(2) = 2

c12 = (2)(4) + (−1)(−1) + (0)(5) = 9

4Producto punto entre dos vectores u = (u1, . . . , un) y v = (v1, . . . , vn):

u · v =
n∑

k=1

uk vk
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c21 = (1)(1) + (3)(0) + (2)(2) = 5

c22 = (1)(4) + (3)(−1) + (2)(5) = 11

AB =

(
2 9
5 11

)

Ejemplo 2× 2

Sea

A =

(
3 −2
1 5

)
, B =

(
4 0
−1 2

)
Calculamos C = AB ∈ R2×2 por fila por columna

c11 = 3 · 4 + (−2) · (−1) = 12 + 2 = 14

c12 = 3 · 0 + (−2) · 2 = 0− 4 = −4

c21 = 1 · 4 + 5 · (−1) = 4− 5 = −1

c22 = 1 · 0 + 5 · 2 = 0 + 10 = 10

AB =

(
14 −4
−1 10

)

3× 2 por 2× 3

Sea

A =

1 2
0 −1
3 1

 , B =

(
2 1 0
−1 4 3

)
Calculamos C = AB ∈ R3×3

c11 = 1 · 2 + 2 · (−1) = 2− 2 = 0, c12 = 1 · 1 + 2 · 4 = 1 + 8 = 9, c13 = 1 · 0 + 2 · 3 = 0 + 6 = 6

c21 = 0 · 2 + (−1) · (−1) = 1, c22 = 0 · 1 + (−1) · 4 = −4, c23 = 0 · 0 + (−1) · 3 = −3

c31 = 3 · 2 + 1 · (−1) = 6− 1 = 5, c32 = 3 · 1 + 1 · 4 = 3 + 4 = 7, c33 = 3 · 0 + 1 · 3 = 3

AB =

0 9 6
1 −4 −3
5 7 3


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