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Sobre este libro

Este libro redne notas y resoluciones de ejercicios de clase de Matemdtica Aplicada I (FCE-UBA). Su objetivo
es acompanar la cursada: ordenar ideas, fijar métodos y ofrecer ejemplos resueltos. Puede contener errores
u omisiones; toda correccién o sugerencia es bienvenida en jcabralQudesa.edu.ar.
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1 Técnicas de estudio basadas en evidencia

“Somos malos jueces de cuando estamos aprendiendo bien y cudndo no. Cuando el progreso es
mas dificil y més lento y no se siente productivo, tendemos a recurrir a estrategias que parecen
mads fructiferas, sin darnos cuenta de que las ganancias de esas estrategias suelen ser temporales.”
Brown, Roediger y McDaniel, Make It Stick: The Science of Successful Learning. (traduccion

propia)

La evidencia es clara: solemos juzgar mal nuestro propio aprendizaje y preferimos métodos que “se
sienten” productivos pero no son eficientes (Brown, Roediger, y Mark A. McDaniel 2014). Por eso el primer
capitulo del libro no es de calculo ni de algebra sino, una breve introducciéon a técnicas de estudio con
respaldo empirico.

Por qué empezar por el como aprender

Estudiar matematica y aplicarla a algiin campo concreto como Economia requiere conectar definiciones for-
males con intuiciones econdémicas, derivar condiciones de primer orden y, a la vez, interpretar esas condiciones
con conceptos econémicos. Ese “puente” exige memoria a largo plazo y flexibilidad conceptual. La literatura
en psicologia del aprendizaje muestra que dos précticas destacan mucho por su utilidad: recuperacién
activa (practice testing) y practica espaciada (distributed practice) (Dunlosky et al. 2013; Roediger 11T y
Butler 2011; Cepeda, Pashler, et al. 2006; Cepeda, Vul, et al. 2008). Este capitulo propone incorporar estas
y otras desde el primer dia, con procedimientos concretos orientados a los temas que se tratan en los otros
capitulos.

Qué evitar al momento del estudio

En general, cuando uno estudia hay ciertas conductas que se aplican por defecto sin cuestionamiento ni
critica. Estas técnicas pueden no ser las mejores ya que no son tan efectivas para mejorar la retencion de lo
aprendido o porque ocupan el tiempo limitado que puede ser utilizado para otras técnicas con mayor respaldo.
Aqui, algunas técnicas que no son recomendables debido a la falta de eficacia probada:

Releer sin mas. Releer crea una sensacion de familiaridad que no garantiza retencién ni transferencia.
Varios estudios no encuentran ventajas de la relectura frente a métodos activos Callender y M. A. McDaniel
2009; Weinstein, McDermott, y Roediger I1I 2010; Agarwal et al. 2008. En este sentido, no es recomendable
releer 10 veces un teorema para intentar acordarse del mismo.

Subrayar sin criterio. La evidencia es mixta: hay trabajos que no hallan beneficios o incluso efectos
negativos si se subraya demasiado o mal Peterson 1991; Lorch y Klusewitz 1995; Winchell et al. 2018, y
otros que muestran que con instrucciones precisas puede ayudar Yue et al. 2015; Miyatsu, Nguyen, y M. A.
McDaniel 2018. Si uno decide usar esta técnica, la recomendacion es que sea minima y con reglas (p. ej., una
idea clave por parrafo).

Resumir. Resumir puede ayudar si uno sabe qué y céomo destilar Bretzing y Kulhavy 1979; Rinehart,
Stahl, y Erickson 1986, pero su efectividad es muy variable y suele perder frente a estrategias mas activas
como la autoexplicacion o el auto-cuestionamiento Bednall y Kehoe 2011; King 1992; Dunlosky et al. 2013.

Lo que si funciona y cémo aplicarlo

1) Recuperacién activa (Active Recall). Consiste en intentar recordar y reconstruir sin mirar el ma-
terial. Funciona en laboratorio y en aula, a corto y largo plazo M. A. McDaniel et al. 2007; Roediger 111 y
Butler 2011; Larsen, Butler, y Roediger IIT 2009; Schmidmaier et al. 2011; Agarwal et al. 2008. Esta idea
se basa en intentar simular situaciones de exdmenes constantemente, haciéndose preguntas como ;Cémo era
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esta formula? ;Cual es la intuicién detrds de esta ecuacion? ;Qué regla se utiliza acad? Este autotesteo
requiere esfuerzo mental, el cual facilita la retencion de los contenidos. Existe una relacién entre el esfuerzo
mental invertido en responder una pregunta y la cantidad de tiempo que va a transcurrir hasta que uno se
olvide de como responderla. A mayor esfuerzo, recordamos maés.

Cémo implementarlo: Al momento de leer un libro en vez de simplemente ir pasando pagina por
pagina, detenerse cada cierto tiempo y preguntarse el porqué de los pasos realizados o intentar averiguar cudl
es el procedimiento posterior para resolver un problema. Obviamente estos testeos no pueden durar demasiado
ya que consumirian mucho tiempo, pero tomarse unos minutos para plantearse si uno estd entendiendo lo
explicado siempre es buena idea. Una vez finalizada la lectura sobre un tema, una buena practica que cuenta
con mucha evidencia a favor es realizar “flashcards”. Las flashcards son tarjetas que de un lado contienen
una pregunta y del otro lado una respuesta, son cortas y la idea es no estar demasiado tiempo pensando.
Por ejemplo, una flashcard puede ser ;Cudl es la féormula para la elasticidad precio de la demanda? y del
otro lado puede estar la férmula. Estas flashcards pueden hacerse con lapiz y papel, pero también existen
aplicaciones que permiten crearlas digitalmente como Anki.

2) Practica espaciada. Repartir las sesiones en el tiempo aumenta la retencién Bahrick 1979; Cepeda,
Pashler, et al. 2006. El espaciado éptimo suele estar entre el 5-30% del intervalo hasta la evaluacién Rohrer
y Pashler 2007; Cepeda, Vul, et al. 2008.

Cémo implementarlo: Si el examen es en 30 dias y se toma 10% como gufa, conviene programar
repasos cada 3 dfas (30 - 0.1 = 3). Lo ideal es espaciar las sesiones de estudio y al momento de tenerlas,
aplicar recuperacion activa.

3) Autoexplicaciéon y generaciéon. Explicar con tus palabras por qué un paso es vélido, o generar
preguntas/respuestas propias, potencia el aprendizaje y supera en general al resumen pasivo King 1992;
Weinstein, McDermott, y Roediger IIT 2010.

Coémo implementarlo: Después de una clase, tomar el cuaderno y ver si se entienden los pasos
algebraicos o generar una explicacién propia de la interpretacion de las ecuaciones, etc.

4) Intercalado (interleaving) y variacién. Alternar tipos de problemas, es decir, ir cambiando de tema
constantemente. Esto dificulta un poco el estudio pero mejora la discriminacién de métodos.

Coémo implementarlo: Por ejemplo, tomar ejercicios de las guias de forma aleatoria e intentar re-
solverlos uno después de otro, en vez de ir por los primeros 1, 2, 3 y asi sucesivamente, saltearse ejercicios y
resolver: 2, 6, 10, 3, 8,... y asi.

Ejemplo

Supongamos que queremos estudiar dos temas diferentes: elasticidad de demanda y derivadas compuestas.
La idea seria primero tener en cuenta que si el examen es dentro de un mes, planear estudiar cada cierta
cantidad de dias en vez de realizar pocas sesiones largas. Por otro lado, al momento de leer el material de
estudio, ir preguntandose si uno entiende lo que esta leyendo y generar flashcards con preguntas clave: ;Cémo
es la formula? ;Para qué sirve? ;Coémo interpreto este resultado? ;Cudles son los pasos a seguir? entre
otras. Una vez hecho esto, practicar ejercicios combinando los dos temas en la misma sesién y no dejando un
tema para una sesién de estudio y otro tema para otra sesién. Por tltimo, al momento de realizar las tltimas
sesiones, intentar asemejar el contexto de estudio lo maximo posible al contexto de evaluacién. Utilizar
temporizadores, no tener a mano el libro para revisar las respuestas, solamente contar con las herramientas
disponibles que van a estar en el examen, etc.

El rol de las inteligencias artificiales generativas

Es imposible ignorar que los chatbots generativos hoy en dia cada vez son mas populares. Mas que un
obstaculo, el uso de los mismos puede generar oportunidades. Algunas recomendaciones para utilizarlos
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serian las siguientes:

1. Utilizarlos para generar problemas nuevos o que combinen ejercicios.
2. Solicitar intuiciones diferentes o puntos de vista distintos a los que uno tiene.

3. Usarlos para criticar nuestros razonamientos o intuiciones. Si creemos que tal vez nos equivocamos,
una buena forma es darle a la IA nuestro razonamiento y pedirle que lo analice rigurosamente.

4. Generar ideas para flashcards.

5. Generar un plan de estudio separado por dias y que tenga en cuenta las técnicas propuestas anterior-
mente.

Por dltimo, es importante recordar que cualquier inteligencia artificial generativa al dia de hoy comete errores,
muchas veces sutiles y otras veces groseros. Esto ultimo debe servir de advertencia no para restringir su uso
sino, para ser criticos al momento de tomar en cuenta lo generado.
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2 Curvas de nivel

Introduccién

Las curvas de nivel (o lineas de contorno) de una funcién de dos variables z = f(x,y) se obtienen fijando un
valor constante z = ¢ y resolviendo la ecuacion

flz,y) =c

Cada valor de ¢ determina una curva en el plano zy que representa los puntos en los que la funcién adquiere
ese valor.

Regla Practica para Graficar Curvas de Nivel

1. Fijar el valor de z: Escoger un ntmero ¢ (por ejemplo, ¢ =0, 1, —1, etc.).
2. Obtener la ecuacién en z e y: Sustituir z = ¢ en f(z,y) = ¢ y simplificar la ecuacién.

3. Identificar la forma de la curva: Reconocer si la ecuacién representa un circulo, elipse, hipérbola,
recta u otra figura.

4. Determinar puntos clave: Encontrar intersecciones con los ejes, vértices, asintotas u otros puntos
notables.

5. Graficar: Con la informacién anterior, traza la curva en el plano xy.

Ejemplos de Curvas de Nivel

1. Circulo: z = 22 + 92

e Curva de nivel: Al fijar z = ¢, se tiene
z? + yz =c

e Condicién: ¢ > 0, radio » = /c; si ¢ < 0, no hay soluciones reales.
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<

4 +

Figura 1: Curvas de nivel de z = 22 + y?: circulos para distintos valores de c.

2 2
. z Y
2a. Elipse: 2 = — + =
P a? b2
e Curva de nivel:
P
2TE=e

e Semiejes: a\/c en x, b\/c en y; si ¢ = 0, la curva se reduce al punto (0,0)

2 2
2b. Elipse: z = T + L
a b

e Curva de nivel:

2 2
T Y
—+=—=c
a b

e Forma alternativa: ‘
22 2
I A
ac  be

e Semiejes: /ac en x, Vbc en y; para ¢ = 0, punto (0,0)
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Figura 2: Curvas de nivel de z = % +

=[S

3. Hipérbola: z = azy

e Curva de nivel: .
Yy=—

e Casos: Para ¢ =0, la curva es + = 0 U y = 0, es decir, los ejes coordenados.

Figura 3: Curvas de nivel de z = axy: hipérbolas y = -~
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4. Plano: ar + by = cz

e Forma explicita:

z=-x+ -y
& C

e Curvas de nivel:
ax + by = ck

que representan rectas paralelas para distintos valores de k.

Figura 4: Curvas de nivel del plano ax + by = cz: rectas paralelas ax 4+ by = ck para distintos valores de k,

5. Hipérbola: z = 2% — 4/

e Curva de nivel:

22 —yP=c
e Casos:
- c>0: ) )
¢
?
c c
vértices en x = +./c
—c=0:
y=z y y=-1
—c<O0: § )
x
T
e[ el

vértices en y = ++/|c|
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Figura 5: Curvas de nivel de z = 22 — y?: para ¢ > 0 abren sobre el eje z; para ¢ < 0 (rojo) abren sobre el
eje y. El caso ¢ = 0 son las rectas y = £z (grises, punteadas).
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3 Curvas de nivel en Economia

En esta seccién se analiza la importancia de las curvas de nivel en el contexto econémico, enfocandonos en
su uso para representar y analizar funciones de produccion y utilidad.

e Curvas de Nivel: Representan conjuntos de puntos en los cuales una funcién de dos variables mantiene
un mismo valor. FEn economia, se utilizan para identificar combinaciones de insumos o bienes que
generan un mismo nivel de produccién o satisfaccion.

e [socuantas: En funciones de produccién, las curvas de nivel se denominan isocuantas, que muestran las
combinaciones de factores productivos que producen una cantidad constante de output.

e Curvas de Indiferencia: En el andlisis de la utilidad, las curvas de nivel se conocen como curvas de
indiferencia y representan combinaciones de bienes que proporcionan el mismo nivel de satisfaccién al
consumidor.

Propiedades Deseables de las Curvas de Nivel en Economia

Las curvas de nivel derivadas de funciones de utilidad deben exhibir ciertas propiedades para reflejar compor-
tamientos econdmicos razonables. A continuacién, se describen las caracteristicas y la intuiciéon econémica
asociada a cada una:

1. No se Cortan

e Intuicion Econdémica: Cada curva de nivel representa un nivel tnico de utilidad. Si dos curvas se
cruzaran, implicaria que una misma combinacién de bienes podria proporcionar dos niveles diferentes
de satisfaccion, lo cual es inconsistente en el anélisis de preferencias.

2. Pendiente Negativa

e Intuicién Econémica: Para mantener constante la utilidad, un aumento en la cantidad de un bien debe
ir acompanado de una disminucién en la cantidad del otro.

3. Monotonicidad

e Intuiciéon Econémica: La monotonicidad implica que al aumentar la cantidad de cualquiera de los bienes
(mientras se mantiene la otra constante), la utilidad no disminuye. En la gréfica, esto se traduce en
curvas que crecen hacia arriba y a la derecha, reflejando la preferencia por més cantidad de bienes.

4. Continuidad

e Intuicion Econémica: La continuidad asegura que pequenas variaciones en las cantidades de bienes
resultan en pequenos cambios en la utilidad. Esto permite predecir el comportamiento del consumidor
sin saltos abruptos en sus niveles de satisfaccion.

5. Convexidad al Origen

e Intuicién Econdémica: A medida que se dispone de més de un bien, el consumidor estd dispuesto a
sacrificar cada vez menos del otro para obtener una unidad adicional del primero. Es una manifestacién
de la preferencia por combinaciones balanceadas de bienes, evitando consumir cantidades extremas de
uno solo.
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Recta Presupuestaria y Métodos de Graficacion

La recta presupuestaria representa las combinaciones de dos bienes que un consumidor puede adquirir gas-
tando todo su ingreso, dados los precios de dichos bienes.

Método 1: Despejar una Variable en Funcion de la Otra

Ecuacion general de la restriccion presupuestaria:
P1g1 +p2g2 = R

Despejando ¢o en funcion de g;:
R m
2 = — — —(q1
D2 P2

e Intuicién: La ecuacién muestra que, a medida que aumenta la cantidad de ¢;, la cantidad de go debe

disminuir para mantener constante el gasto total R. La pendiente —2 refleja la tasa a la cual se puede

. . . P2
intercambiar bienes.
e Aplicacién: Este método permite graficar la recta presupuestaria como una funcién lineal, facilitando

el andlisis algebraico de las decisiones del consumidor.

Método 2: Utilizar los Interceptos

e Intercepto en el eje q1:

qQ=—
P1
e Intercepto en el eje qs:
R
Q2 = —
P2

e Intuicion: Estos interceptos representan las cantidades maximas de cada bien si el consumidor gasta
todo su ingreso en uno solo.

e Aplicacién: Conociendo ambos puntos, se traza la recta que los une. Esta gréfica ilustra de manera
clara las opciones de combinacion de bienes disponibles.
Curva de Costo para el Productor
La curva de isocosto representa las combinaciones de insumos que se pueden adquirir para un costo total fijo:
w121 + wexe = C

donde w; y ws son los precios de los insumos, x; y x2 sus cantidades.

Isoingreso

La linea de isoingreso representa las combinaciones de productos o bienes que generan un ingreso total
constante:
P11 +p2g2 =1
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Curvas de Indiferencia Cobb-Douglas

Las curvas de indiferencia derivadas de una funcién de utilidad Cobb-Douglas representan combinaciones de
bienes que otorgan un nivel constante de utilidad. Una forma general de esta funcién es:

Uz, x2) = a§al

donde «, 8 > 0.

Graficando

e Despejar una Variable:

1
N UO B

U]/ﬁ
Ty = ——=
8

22/

0, equivalentemente,

Esto permite graficar la curva de indiferencia para un nivel dado de utilidad U, considerando distintos
valores de .

e Observaciones:

— Las curvas son convexas al origen, lo que refleja una tasa marginal de sustitucién decreciente.
— Nunca tocan los ejes, ya que si 1 = 0 o 22 = 0, entonces la utilidad total es cero.
— Las curvas se ubican en el primer cuadrante, ya que se supone que el consumidor sélo considera
cantidades positivas de bienes.
Cada curva representa un nivel fijo de utilidad, y al aumentar dicho nivel, las curvas se desplazan hacia
arriba y a la derecha, reflejando preferencias monodtonas.

Nota: Las funciones de produccion también suelen tener forma Cobb-Douglas, en cuyo caso las curvas
de nivel se denominan isocuantas y reflejan combinaciones de factores productivos que permiten obtener una
misma cantidad de producto.
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4 Optimizacion con curvas de nivel

Método de Igualacién de Derivadas para la Optimizacion con Re-
striccion

Supongamos que queremos optimizar (maximizar o minimizar) una funcién objetivo F'(x,y) sujeta a una
restriccion G(z,y) = C. La idea es asumir que, en el punto 6ptimo, el valor de la funcién objetivo es
constante y, de esta forma, expresar una de las variables en funcién de la otra a partir de ambas ecuaciones
(la funcién objetivo y la restriccién). Luego, derivamos cada despeje respecto a la otra variable, igualamos las
derivadas y, a partir de esa igualdad, obtenemos una relacion entre = y y que, al sustituirla en la restriccion,
permite hallar la solucién 6ptima.

El procedimiento se resume en los siguientes pasos:

1. Fijar el nivel 6ptimo: Se asume que en el éptimo la funcién objetivo alcanza un valor constante,
digamos F(z,y) = K.

2. Despejar = (o y) en funcién de y (o z): Se resuelve la ecuacién F(x,y) = K para obtener una
expresion del tipo

r = f(y),

y se despeja la misma variable a partir de la restriccion:

x=g¢g(y) (obtenido de G(z,y) = C).

3. Derivar respecto a la otra variable: Se derivan ambas expresiones con respecto a y. Asi se obtienen:

da =f'y) vy d =9'(y).

dy objetivo dy restriccién

4. Igualar las derivadas: En el punto 6ptimo ambas curvas son tangentes, por lo que sus pendientes
deben coincidir. Esto implica:

') =4 ).

Esta igualdad permite despejar una relacién entre x e y (o encontrar el valor de y).

5. Realizar el proceso con el otro despeje: De manera analoga, se despeja y en funcién de z tanto a
partir de la funcién objetivo como de la restriccién:

y="hz) v y=k),
y se derivan ambas expresiones respecto a x:

dy

dx objetivo

dy

dx |restriccién

=h(z) vy =K' (z).

Tgualando estas derivadas se obtiene otra relaciéon entre z e y. Esta segunda igualdad, junto con la
anterior, permite eliminar el pardmetro K (el valor fijo de la funcién objetivo) y obtener una relacién
Unica entre x e y.

6. Sustituir en la restriccién: Con la relacién obtenida se reemplaza en la restriccién original G(zx,y) =
C para calcular el valor 6ptimo de una de las variables y, a partir de alli, el otro.
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Ejemplo: Optimizacién de f(z,y) = 2%y sujeta a 5z + 2y = 100

Sea la funcién objetivo
f(xa y) = Izya

y la restriccién
o5z + 2y = 100.

En el éptimo se asume que f(x,y) = K es constante.

Despejar x en funcion de y

e Desde la funcion objetivo: Partiendo de

despejamos z (tomando la rama positiva'):

K
P N T
Yy

5z + 2y = 100,

e Desde la restriccion: De

se obtiene:
100 — 2y
r= ——-,:.

5

e Derivar respecto a y:

— Para la funcién objetivo:

dz 1
— = VK y 2
dy ny

— Para la restriccién:
dx 2

dy 5
e Igualar las derivadas: En el éptimo se tiene:
1 2
VK32 =2
VK 5

Cancelando el signo negativo y despejando vK:

1 . 2 4
iﬁy73/2:g = \/I?Zgy:;/Q

Elevando al cuadrado se obtiene: 16
K=—y¢°.
25
ITomar la solucién positiva del despeje es algo que comtinmente se hace en ejemplos econémicos ya que las variables suelen
tener interpretaciéon de bienes o precios, los cuales nunca podrian ser negativos.
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Despejar y en funcién de =

e Desde la funcion objetivo: Partiendo de

x°y = K,
despejamos y:
K
Y= 22
¢ Desde la restriccién: De
5z + 2y = 100,
despejamos y:
100 — 5z
-5
e Derivar respecto a z:
— Para la funcién objetivo:
d
y=Ka2? = L _ogg3
dx
— Para la restriccion:
dy 5
de 2
e Igualar las derivadas: Se igualan:
2K 273 =2

Cancelando el signo negativo y despejando K:

5 )
2K$_3:§ — Kzzﬂfg

Igualacién de los valores de K y obtencion de la relacion entre x e y

De los dos procesos obtenemos:

16 5
K = — 3 K = — 3
25Y Y 1"
Igualando:
16 5 5 4
%Y 1

Multiplicamos ambos lados por 100 (o directamente despejamos) para simplificar:

164 5 52 5 _ 64 5 125 ,

25.4Y “1.25" 100Y T 100"
lo que simplifica a:
641> = 1252°.
Dividiendo ambos lados por z3:
(y)3 125
x/) 647
y, al tomar la raiz cibica:
y 5 . 5
== - Yy = — .
r 4 J 4 !
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Sustitucién en la restricciéon para hallar = y y

Sustituyendo y = %:c en la restriccién

5z + 2y = 100,
se tiene: 0 0
5 1 5 10x + 5x 15z
ST + <4x> 5l‘+4$ 5x+2x 3 5 00

Despejamos x:
_100-2 200 40

15 15 3

Luego, y es:
5, 5 40 _200 50
Y=4t T3 T2 T g

Valor 6ptimo de la funcién

Finalmente, el valor 6ptimo de la funcion es:

40 50 40\* 50 1600 50 80000
535)=3) 3= 35- .

3) 3 9 3 271

Resumen del Método

1. Se despeja x en funcién de y (y viceversa) a partir de la funcién objetivo x?y = K y la restriccién
5z + 2y = 100.

2. Se derivan ambas expresiones con respecto a la variable correspondiente y se igualan, obteniéndose dos
relaciones que involucran K.

3. Se igualan los valores de K obtenidos en ambos procesos para eliminar el pardmetro K y obtener una
relacion Unica entre x e y.

4. Finalmente, se sustituye esta relacion en la restriccién para determinar los valores 6ptimos de x y y.

Ejemplo: Minimizacion de C = 3z; + 629 + 180 sujeta a x1z9 = 2

Se desea minimizar
C = 3$1 + 6%2 + 180,
sujeto a la restriccion
X1To = 2.

Fijamos un nivel constante para la funcién objetivo

3x1 4+ 622 + 180 = K,

Paso 1: Derivaciéon de la Funcion Objetivo

Despejamos x5 en funcién de z1:
vy — K — 180 — 3z,
2 = 6 .
Al derivar con respecto a x1 se obtiene:
d{,CQ 3 1

dr, 6 2
Noétese que la derivada no depende de K (la constante desaparece).
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Paso 2: Derivacion de la Restricciéon

A partir de la restriccién

1o = 2,
despejamos xs:
2
X9 = —.
Ty
Derivamos respecto a x1 se obtiene:
dl’z 2
dry x?

Paso 3: Igualar las Derivadas

En el punto de tangencia entre la curva de nivel de la funcién objetivo y la curva de la restriccién, sus
pendientes deben ser iguales. Es decir:

o2
2 z?’
Cancelando el signo negativo y resolviendo:
1 2 2 _
5:7% = 21=4 = =2,

(considerando z1 > 0).

Paso 4: Determinar 2, y el Costo ()ptimo

Sustituyendo z; = 2 en la restriccién:

2
:1:2:5:1.

Por tanto, el costo minimo es:

Cinin = 3(2) + 6(1) + 180 = 6 + 6 + 180 = 192.

Método de Sustitucion para la Optimizacion con Restriccion

Supongamos que queremos optimizar (maximizar o minimizar) una funcién objetivo F'(z,y) sujeta a una
restriccién G(z,y) = C. Este método consiste en despejar de la restriccién una variable, sustituir esa
expresion en la funcién objetivo para reducir el problema a una tnica variable, derivar respecto a esa
variable, igualar a cero y, finalmente, resolver para encontrar la solucién éptima.

El procedimiento se resume en los siguientes pasos:

1. Resolver la restriccién: Dada la restriccion
Glz,y) = C,
se despeja una de las variables. Por ejemplo, si despejamos y obtenemos:
y = g(x).

2. Sustituir en la funcién objetivo: Se inserta y = g(z) en la funcién objetivo F(x,y) para obtener
una funcién de una sola variable:

f(x) = F(z,9(x)).
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3. Derivar e igualar a cero: Se deriva la funcién f(x) respecto a x y se impone la condicién de primer

orden:
df (x)

dx
Esta ecuacion se resuelve para hallar el valor 6ptimo x*.

4. Determinar la otra variable: Finalmente, se sustituye z* en la expresién y = g(x) para obtener y*.

Este método reduce el problema original de dos variables a uno de una sola variable, simplificando el
proceso de optimizacién.

Ejemplo: Optimizacién de f(z,y) = 2’y sujeta a 5z + 2y = 100
(Método de Sustitucion)
Sea la funcién objetivo

y la restriccién
o5z + 2y = 100.

El método de sustitucion consiste en despejar una variable de la restriccion, insertar esa expresién en la
funcién objetivo para obtener una funcién de una sola variable, derivar respecto a dicha variable, igualar a
cero y finalmente despejar.

Paso 1: Resolver la restriccion

De la ecuacién
o5z + 2y = 100,
despejamos y:

100 — 5z
y=—7

Paso 2: Sustituir en la funcién objetivo

Insertamos la expresién de y en f(x,y) = 22y

f(z) = 72 <M) =

5 (100z* — 52°) .

1
2
Paso 3: Derivar e igualar a cero

Derivamos f(x) respecto a x:
1 1
f'(z) = 5 (2002 - 152%) = 100z — ?5552.
Para hallar el 6ptimo, igualamos la derivada a cero:

15
100z — 53;2 =0.

1
x (100 — 2535) =0.

Factorizamos x:
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Se obtienen dos soluciones: z = 0 (solucién trivial) y

15 200 40
100—?1’:0 - r=—-—=—.

15 3
Descartamos z = 0 y tomamos 2" = 470
Paso 4: Determinar y
Sustituyendo z* = 4—30 en la expresion de y:

. 100_5(%) B 1007¥ B 300;200 B &50 B 50
v 2 T T T

Paso 5: Valor 6ptimo de la funcién

El valor éptimo de la funcion es:

40\ 50 80000
3 3 21

—~

R

“I8

| g

~——
I

Resumen del Método de Sustitucion
1. Se despeja una variable de la restriccién, en este caso y = %.
. Se sustituye en la funcién objetivo para obtener f(z) = 1(100z% — 523).
. Se deriva f(x) respecto a  y se iguala a cero para encontrar el valor éptimo z*.

2
3
4. Se utiliza z* en la expresién de y para determinar y*.
5

. Se evalda la funcién objetivo en (z*,y*) para obtener el valor éptimo.

Ejemplo: Minimizacién de C = 3z; + 629 + 180 sujeta a zix9
(Método de Sustitucién)

Se desea minimizar

C = 3£E1 + 61’2 + 180,

sujeto a la restriccion
T1Xg = 2.
Paso 1: Despejar una variable de la restriccion

A partir de la restriccién x1xo = 2, despejamos o:
2

Xro = —.
Ty

Paso 2: Sustituir en la funcién objetivo

Sustituimos la expresién de o en la funcién objetivo simplificada:

~ 2 12
C(z1)=3z1+6 () + 180 = 3z + — + 180
T

T
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Paso 3: Derivar e igualar a cero

Derivamos la funcién C(z1) respecto a xy:

dC 12
¢ _, 12

— = =
dxq x]

Para hallar el minimo, igualamos la derivada a cero:

12
17
Resolviendo: 12 19
— =3 = ai=—=A,
17
por lo que, considerando x; > 0,
] =2

Paso 4: Determinar x5, y el costo 6ptimo

Sustituyendo x; = 2 en la expresién de xso:

El costo minimo es, entonces:

Resumen del Método de Sustitucion

1. Se despeja o de la restriccién x1xe = 2: x5 = 12—1

2. Se sustituye en la funcién objetivo simplificada C = 321 + 62 para obtener

~ 12
C(z1) =3z1 + —.
T

3. Se deriva respecto a z; e iguala la derivada a cero para hallar z7.

4. Se determina x5 usando la expresion de la restriccién y se evalia C.

Soluciones de Esquina

Es importante notar que el método de sustitucién (o igualaciéon de derivadas) asume que la solucién éptima
es interior, es decir, que la curva de nivel de la funcién objetivo es tangente a la restricciéon. Este método no
es aplicable cuando el 6ptimo se alcanza en una solucién de esquina.

Ejemplo breve: Considera la maximizacién de

fla,y) =2+,
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sujeta a las restricciones
r+y<1,
z>0, y=>0.
En este problema, el éptimo se alcanza en las esquinas (0,1) o (1,0), donde no existe tangencia entre la curva

de nivel y la frontera. Por ello, métodos basados en la igualacién de derivadas no serian adecuados en este
caso.
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5 Continuidad

En esta seccién vamos a repasar rapidamente los limites y la continuidad en una variable y extenderemos las
ideas al caso de dos variables (o0 més).

Repaso: limites y continuidad en una variable

Sea f: ICR—>Ryacl

e Continuidad en a:
f es continua en a < lim f(x) = f(a).

r—a
Esta definicién engloba 3 condiciones:
e La funcién existe en el punto a
e El limite de la funcién existe cuando x — a

e El valor de la funcion en el punto y el limite coinciden.

Ejemplos

Sea
flz) = (z+1)%
Tomemos a = 1. Verificamos continuidad en a con las tres condiciones:
e Existencia de f(1): f(1)=124+2-1+1=4.
e Existencia del limite:
lim f(z) = liml(x2+2x+1) =1242.14+1=4.
r—r

z—1

¢ Coincidencia limite—valor: lim1 flz)y=4=f(Q1).
r—r
Por lo tanto, f es continua en x = 1 (de hecho, en todo R por ser polinémica).

Veamos otro ejemplo. Definimos

z?—1
) x 17
ga)={ a1 "7
0, =1

Observemos que para x # 1,
21 -1 1
2ol _@-Det) L
r—1 r—1

luego
lim g(z) = lim(z + 1) = 2.
z—1

rz—1
Sin embargo, ¢g(1) = 0. Entonces:
e Existe g(1): g(1) = 0.

e Existe el limite: lim g(x) = 2.
r—1

e No coinciden: 2 # 0.
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Por lo tanto, g es discontinua en x = 1 (discontinuidad evitable, ya que si redefiniéramos g(1) = 2 se
volveria continua).
Veamos un ultimo ejemplo. Sea

Analicemos en a = 2.

e Existencia de f(2): f(2) no estd definida (el denominador se anula).

e Comportamiento del limite:

. 1 . 1
lim = —00,
z—2— T — 2

Por lo tanto, lim2 f(z) no existe como nimero finito.
T—r

En consecuencia, f presenta una discontinuidad infinita en = 2 y la recta x = 2 es una asintota
vertical.

Limites y continuidad en dos variables
Sea f: DCR? - Rya=(a,a2) €D.
e Continuidad en a:

f es continua en ¢ <= lim f(z,y) = flay,az).
(z,y)—(a1,a2)

Como en una variable, esta condicién resume tres hechos:
e La funcién estd definida en a: f(aq,aq) existe.

e El limite existe al acercarse a a: lim f(z,y) existe (es tnico).
(z,y)—(a1,a2)

e Coinciden limite y valor: lim flz,y) = f(a1,az).
(z,y)—(a1,a2)
Ejemplos

Sea,
flzy) = 2 + 2y + 397

Verifiquemos primero la continuidad en el punto especifico a = (1, 2).

e Existencia de f(a):
f(1,2)=12+2-1-243-22=1+4+12=17.

e Existencia del limite y coincidencia con el valor: Como f es un polinomio (suma y producto de funciones
continuas),

lim z,y) = f(1,2) =17.
(MH(LZ)J”( y) = f(1,2)
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Por lo tanto, f es continua en (1,2).
Ademds, como f es polinémica en x y y, es continua en todo R?; es decir, para cualquier a = (ay, as),

lim f(x,y) = f(alaa’Q)'

(z,y)—(a1,a2)

Veamos otro caso, definimos

1, (x, 0,0),
g(a:,y)={ (x,y) # (0,0)

0’ (1:’ y) = (07 O)'
Al acercarse a (0,0), se tiene  lim  g(z,y) = 1, pero g(0,0) = 0. Por lo tanto,  lim  g(x,y) # ¢(0,0)
(z,y)—(0,0) (z,y)—(0,0)
y g es discontinua en (0,0).

Un ultimo ejemplo. Sea
Ty
b (‘r7 y) # (07 0)7
ha,y) = @ TV

0, (z,y) = (0,0).

Cuando tenemos una sola variable independiente, uno puede acercarse al punto por izquierda y por derecha,
pero al trabajar con dos variables independientes uno puede acercarse al punto de diferentes maneras, como
por ejemplo a través de una relacién lineal entre x e y. Considerando caminos rectos y = max.

x (mx) m

hiw,mz) = 22+ m2z2 1+ m?2

cuyo limite cuando «x — 0 depende de m. Por ejemplo, por y = x el limite vale %,
vale —%. Luego lim  hA(x,y) no existe y h es discontinua en (0,0).
(x,y)—(0,0)

mientras que por y = —x
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6 Derivadas parciales

Derivada para funciones de una variable

Para funciones de una variable la derivada relaciona el incremento de la funcién con el incremento de la
variable independiente (cociente incremental) cuando el incremento de x tiende a cero

f(zo+h) = f(zo)
h

! — 1
fi(wo) = lim
Gréaficamente:

recta tangente

(1,3)

0.5 1 1.5 2 2.5 3 3.5 4
La funcién representada es:
fla)=—(z—2)"+4
En el punto (1, 3), la pendiente de la recta tangente es precisamente la derivada de f respecto a z:

df
— =2
dr|.

z=1

Como esta pendiente es positiva, la funcién en ese punto estd aumentando.

Derivadas parciales

Para una funcién de dos variables debemos considerar el incremento de la funcién z asociada a cambios en
las variables independientes = e y. Para ello, permitimos la variacién de una variable manteniendo la otra
constante.

Dada la funcién z = f(x,y), se define la derivada parcial de f con respecto a = en el punto (zg,yo)
como el valor del siguiente limite, si existe y es finito:

f(xo + h, yo) — f(z0,%0)
h

xg, =1l
(%0, v0) }LILHU

Del mismo modo, se define la derivada parcial de f con respecto a y en el punto (zg, yo) como el siguiente

limite, si existe y es finito:

of , .. f(wo, Yo+ h)— f(xo,y0)
@('LO’ Yo) = /17,13%) h
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Intuicién: Bésicamente consideramos un pequeiio incremento h (que luego hacemos tender a cero) en una
sola variable —x o y— mientras la otra permanece fija. A ese desplazamiento le restamos el valor original de
la funcién para medir cuanto ha cambiado f al pasar del punto viejo al nuevo, y dividimos por la distancia
h recorrida. De este modo obtenemos la variaciéon de f por unidad de desplazamiento en esa direccion, que
es precisamente la derivada parcial en ese punto.

Derivadas parciales en R"

Para generalizar lo anterior podemos pasar a n variables: Sea f: U C R™ — R y sea a = (ay,...,a,) € U.
Para cada ¢ = 1,...,n, la derivada parcial de f con respecto a la variable x; en el punto a se define como

0 A1y i1, G + R, @i, ..., an) — flai,...,a,

['/)((IV)ZHIH f( 1 y Wi—1, ) y j4-1, ,11,) [( 1 ) 1,)

()(L‘;‘, h—0 h
Ejemplo

Sea la funcién
flz,y) =2’y +3zy°

Por definicién

af T f(1+ha2)_f(172)
e1:2) = Ju T

Calculamos

FA+h,2)=2(1+h)*> +12(1 +h) =2+ 4h +2h* + 124 12h = 14 + 16h +2h*  f(1,2) = 14

Luego
_ 2
fA+h2)— f(1,2) _ 16h 4 2h 164 2n
h h
y al tomar el limite
oy
ox

(z,y)=(1,2)

También es posible aplicar reglas de derivadas como en el caso de funciones de una sola variable. Para
esto las mismas reglas son aplicables teniendo en cuenta que las demdas variables se mantienen constantes
cuando derivamos con respecto a una:

Reglas de derivadas mas utilizadas

¢ Regla de la potencia:

¢ Derivada de la funcién logaritmica:

d 1
—(lnx)=—- (x
d:17( nzr) . (x > 0)
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Derivadas de las funciones trigonométricas:

—(sinz) = cosz, —(cosz)= —sinx
;1;(51111) cos z, dr(os r) sin x

Derivadas de las funciones exponenciales:

d
—(@")=a"Ina (a>0, a#1)

dx
¢ Regla del producto:
d du dv
%(u(z)z (z)) = o v(z) + u(z) .

Regla del cociente:

Siguiendo con el ejemplo anterior:
flz,y) =2’y +3zy°

Por regla

g(w,y) =20y +3y° =

g—f(l,Q):2-1-2+3-22:16

Otro ejemplo
Sea la funcién

flz,y) =2y +52y® — 2%y

Por definicién

or h—0 h
flz4h,y) = (x+h)>y> +5(x+h)y® — (2 +h)%y = 239> +32%y > h4-3xy? h2 +y2 h3 + 52y + 5y° h— 22y — 2wy h—yh?
f(x—’_hvy) — f(xvy)
h

= 322y? + 3zy?h + y?*h® + 5y — 22y — yh 120, 3z%y? 4 5y — 2xy

A (CYR) IS (081

oy h—0 h

flz,y+h) = 23 (y+h)? +5x(y+h)>—2%(y+h) = 232 +223yh+a> h* +5xy> +152y* h+-152yh* +52h —x?y—22h

flx,y+h) = fz,y)
h

= 223y + 2®h + 152y® + 15zyh + 5ah? — 22 22% 203y + 15292 — 22
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Por reglas de derivacion

of _ 0 59 0 3 _Q 2\ _ 9.2 2 3
ax(x7y)_8x(xy)+8x(5xy) &T(a: y)—Sxy + 5y° — 2z y

) .
81(:0, y) = 32%y* + 5y° — 2xy
T

) 4 4 0

e = @)+ 4 () = () = 2%+ 150 =
ﬁ(m, y) = 22°y + 150y* — =
dy

2

Las reglas de derivacién (regla de potencia, producto, cociente, etc.) se obtienen a partir de la definicién
limite de derivada. Sin embargo, cuando la funcién estd definida por tramos, esas reglas pueden no ser
aplicables en los puntos de unién. En dichos casos es necesario calcular la derivada parcial directamente
mediante la definicién por limites

Ejemplo con funcién partida

Sea la funcién

) ) 0,0
flay) = q 2 +y? (y) #(0,0)
O’ (l‘,y) = (070)
Por definicién
9z (0) = jim h = jim = Jm 5 =1
@(0’0> = a5 h o %1*)0 - ;%13%) h 0

Derivadas sucesivas

En una sola variable ya conocemos las derivadas sucesivas:
fl@), @), M@

que se obtienen aplicando la definiciéon de derivada reiteradamente sobre la funcién resultante.
En varias variables podemos también derivar mas de una vez, ya sea respecto a la misma variable o a
variables distintas. Asi surgen las derivadas parciales de orden dos y superiores, por ejemplo:

aQJ_f o f — 0 f —f Pf _
ox2 T gyox TV oxoy VT oy

Las derivadas cruzadas f;y y fyz se obtienen derivando primero con respecto a = y luego a y, o viceversa. En

general, las derivadas sucesivas se calculan tomando la derivada parcial de la derivada parcial considerada

., . . P
como nueva funcién, es decir, si g(x,y) = 6—5(95, y), entonces

52 9
8y8fx (z,y) = ;y(g(azy))

fyy

y asi sucesivamente para érdenes mayores.
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Ejemplo
flz,y) =€e* + e¥ + ysin(x)

Derivadas parciales de primer orden

of
Ox

of
dy

(z,y) = %(ew + e +ysin(z)) = e +ycos(z) = [f.(z,y)=e" +ycos(x)

(x,y) = % (e® + e’ +ysin(z)) = e’ +sin(z) = [,(z.y) =’ +sin(z)

Derivadas parciales de segundo orden

% - %(em +ycos(x)) =e” —ysin(z) = fu(v,y) =" —ysin(z)
azzéfx = 3%(61 +ycos(x)) =cos(x) = fuylr,y) = cos(x)
86557; - a%(ey +sin(z)) =cos(z) = [yu(z,y) = cos(x)

gzyjzc = a%(ey t+sin(z)) =¥ = fy(z,y) =

Teorema de Schwarz

El teorema de Schwarz garantiza que, cuando las segundas derivadas parciales cruzadas de una funcion existen
y son continuas, éstas coinciden:

fmimj = fzjarl
Esto resulta especialmente practico porque, tras comprobar esta igualdad, basta calcular una sola de las dos
derivadas cruzadas en lugar de ambas, ahorrando tiempo.

Condiciones de aplicabilidad

Supdngase que en un entorno de un punto (zg,yo) se cumplen:

0
e Existen las derivadas parciales —f y —f
ox ° Oy
2
¢ Existe una de las derivadas parciales cruzadas (por ejemplo 900 ) ¥ es continua en (g, yo)-
y Ox

Bajo estas hipotesis, las derivadas parciales cruzadas van a ser iguales.
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Ejemplo
Sea la funcién
flzy) =2’y +e™?

En todo R? se cumplen las condiciones:

of of

e Existen las derivadas parciales =— y ——.
ox ° Oy

2

Oy Ox

e Existe la derivada parcial cruzada y es continua en R2.
Por tanto, en cualquier punto (z,y) vale el teorema de Schwarz.
Célculo de las derivadas parciales

) 9
fo(z,y) = a?(ny +e™) =2zy+ye™  fylx,y) = @(wzy +e™) =%+ xe™

Derivadas cruzadas

0
fry(xay) = @(2$y+y€wy) =2x+e"Y +xye™?

fyz(ajay) = 82(.1'2 +J;e”y) =2 +e"Y 4 xye?
T

,f.’l:y(-'/l/’y Z/) - fy:l:('r3 ?/)
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7 Diferencial

Recordatorio: calculo univariable
Sea f : R — R diferenciable en . La aprozimacion lineal (o linealizacion) alrededor de xg es
flzo+h) ~ f(xo) + f'(wo)h con h=x—mx

El diferencial de f en xg se define como
df = f'(x0)dx

Intuicién: Al “hacer zoom” sobre la grafica de f alrededor de zg, la curva se vuelve casi recta: la recta
tangente con pendiente f’(zg) es la mejor aproximacion local de f. Dar un pasito dz en x provoca un cambio
real

Af = f(zo+dz) — f(zo)
que es aprozimadamente igual al diferencial:

Af = df = f'(zo)dx

es decir, pendiente X paso
También se puede ver como

f(zo+ h) = f(zo) + f(zo)h + o(h) cuando h — 0
o . o(h) : o
donde o(h) denota un término tal que }111% = 0; es decir, el error entre la aproximacion lineal y el valor
—

real es despreciable frente a |h| cuando h — 0

Definicién en dos variables independientes
Sea f : R? — R diferenciable en (a,b). El diferencial de f en (a,b) es

df = fu(a,b)dz + fy(a,b)dy
Equivalente:

fla+dz, b+dy) = f(a,b) + fz(a,b)dz + fy(a,b)dy

Geometria: en dos variables, la aproximacién no es una recta sino un plano tangente al grafico z = f(z,y)
en (a,b):
z = f(a,b) + fs(a,b)(x —a) + fy(a,b)(y—10)

Intuicién: Lo que buscamos es aproximar el cambio de z a partir de cambios pequenos en = e y. Cada
derivada parcial f;(a,b) y fy(a,b) mide cudn sensible es z a x 0 a y por separado. Si nos movemos dx en x
y dy en y, el cambio total se aproxima sumando ambos aportes:

Az~ df = fola,b)dz + fy(a.b)dy

es decir, “pendiente en x” X “paso en x” + “pendiente en y” X “paso eny”
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Condiciones suficientes
Si fp y fy existen en un entorno de (a,b) y son continuas en (a,b), entonces f es diferenciable en (a,b) y la

aproximacion lineal anterior es vélida.

Intuicién: Exigir que f, y f, sean continuas cerca de (a,b) garantiza que las pendientes en x y en y no
cambien bruscamente. Si las pendientes varfan de forma suave, entonces la superficie de f cerca de (a,b)
se parece mucho a su plano tangente, y la aproximacién lineal con el diferencial describe bien los cambios
pequenos en z

Caso general R” — R

Para f: R™ — R diferenciable en a € R",

_ 9 vdes 4 9 OF (v ds
df = pr (a)dxy + B (a)dzy + + pr. (a) dzy,
Es decir: ,
df = Vf(a) -dx = i o7 (a) da
’ ’ P (()Ll ‘

y de forma aproximada:

Ejemplos
Sea f(x,y) = 2%y + e*¥. Entonces
fo=2zy+ye™ fy=2"+xe™
En (a,b) = (1,1),
df = (2-1-1+1-¢e)dx + (I°+1-¢)dy = (2+e)dz+ (1+e)dy
Para dx = 0.01 y dy = —0.02,
Af~df =(2+¢)(0.01)+ (1+e)(-0.02) = —0.0272

El resultado negativo indica que, con un incremento pequeno en x y una disminucién en y, el valor de la
funcién f tiende a reducirse levemente. En otras palabras, el efecto de disminuir y en un 0.02 pesa maés
que el incremento positivo que produce aumentar x en 0.01, de modo que el cambio neto es una pequena
disminucién en f.

Si calculamos la variacion real tenemos lo siguiente:

Af = f(1.01,0.98) — f(1,1) = (1.01)*-0.98 4 9% _ (1 4 ¢)
= 3.6903942793 — 3.7182818285 = —0.0278875492

Lo cual es similar al resultado anterior pero con diferencias a partir del cuarto decimal.
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Diferencial de segundo orden

Sea f : R? — R con derivadas parciales primeras y segundas existentes en un entorno de (a,b), y cuyas
segundas derivadas parciales son continuas en ese entorno. Su diferencial de sequndo orden en (a,b) es

A%f = feu(a,b) (dz)? + foy(a,b)dzdy + fyo(a,b)dydz + f,,(a,b)(dy)?

El diferencial segundo mide cdmo cambia la pendiente cuando ocurre un movimiento nuevo de x e y.
Este diferencial segundo se puede utilizar para generar aproximaciones como el polinomio de Taylor. La
aproximacién de Taylor de segundo orden alrededor de (a,b) es

fla+dz, b+dy) = f(a,b) + fs(a,b)dz+ f,(a,b)dy + % d?f
N
df término cuadratico

De esta misma forma podemos seguir anadiendo términos para que la aproximacién sea mas exacta
(con diferenciales terceros, cuartos, etc.)

Plano tangente

En una variable, al “hacer zoom” en = = a la gréafica se vuelve casi recta y la recta tangente con pendiente
f/(a) es la mejor aproximacion local. En dos variables, el andlogo es el plano tangente que pasa por un punto
de la funcién.

Sea f : R? — R diferenciable en (a,b). El plano tangente al gréfico z = f(x,y) en (a,b, f(a,b)) es

z = f(a,b) + fo(a,b)(x —a) + fy(a,b)(y—10)

Ejemplo Tomemos f(z,y) = In(z + y) + 22y (dominio: = +y > 0). Entonces

1 2
+x
T+y

En (a,b) = (2,1): f(2,1) =In3+4, f,(2,1) = %4—4 = 13—37 v(2,1) = %—1—4 = % Por lo tanto, el plano
tangente es
13 13
z = In3+4 + ?(:1772) + ?(?!*1).

Esta funcién se comporta similar a la funcién original siempre y cuando nos mantegamos en un entorno
cercano al punto analizado.
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8 Aplicacion econémica de diferencial

Tasa marginal de sustitucién (TMS)

Dada una funcién de utilidad que depende de las cantidades de dos bienes q1 vy g2, llamamos tasa marginal
de sustitucion (TMS) a la tasa de compensacién entre ellos. Es decir, es la cantidad que se estarfa dispuesto
a ceder de uno de los bienes para obtener una unidad adicional del otro, manteniendo constante el nivel de
utilidad.

Calculamos el diferencial de la funcién de utilidad u(q1, g2):

ou ou
du = —d —d
U on q1 + o0 q2
Como du = 0 sobre la curva de indiferencia:
ou ou d Qu
g+ o—dgy =0 = S2 — _ 2
a(h 3Q2 dQ1 TQQ

Esta pendiente o el médulo de la misma representa lo que se suele llamar tasa marginal de sustitucién de
bienes:

d Ou
TMS = |52 | = 20
dCh 37112
Graficamente
)
z1
Ejemplo

Dada la funcién de utilidad w(q1, g2) = 5142, calcular la TMS en el punto (g1 = 5, g2 = 2).

ou

K 5 =5-2=10
o0 q2

8

X 5 =5-5=25
0qo

TMS = 10 =04
25
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Interpretacién: Para aumentar una unidad de g1, se deben ceder 0.4 unidades de ¢o para mantener
constante el nivel de utilidad
Si se invierte la tasa y se calcula %, obtenemos:
ou
dq1 _ 9q2 25

dgp — Be 10

2.5

Interpretacion: Para aumentar una unidad de g2, se deben ceder 2.5 unidades de ¢; para mantener
constante el nivel de utilidad

Tasa de sustitucion técnica

Dada una funcién de produccion que depende de dos insumos 1 y 2, llamamos tasa marginal de sustitucion
técnica (TST) a la tasa a la que una empresa puede sustituir un factor productivo por otro, manteniendo
constante el nivel de produccién.

Calculamos el diferencial de la funcién de produccion gz, x2):
9q 9q

dry + =——dxso

dg=—
q 81‘1 8LE2

Como dg = 0 sobre la isocuanta:

9q
dq dq dxo 9z
K g+ gy —0= 22 = 21
B 1 T By, 002 dny L
22

El moédulo de esta pendiente representa la tasa marginal de sustitucién técnica:

dx 2
TST = |——| = 92
d:IZl 879;12

Ejemplo

Dada la funcién de produccion:
q(a,b) =20 — 7a +8b — a® +b*

calcular la TST en el punto a = 1.2,b = 2.2.

dq

2 a (1.2)

%:8+2b:8+2(2.2):12.4
—94

TST = —— ~ —0.75

S o4 0.758

Interpretacién: Para aumentar una unidad de a, se deben ceder aproximadamente 0.758 unidades de b
para mantener constante el nivel de producciéon
da:1

Si se invierte la tasa y se calcula o obtenemos:

de, 9 124 o
drzy 94 —94
d
Interpretacion: Para aumentar una unidad de b, se deben ceder aproximadamente 1.319 unidades de a
para mantener constante el nivel de produccién
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Notacién

En muchos textos se utiliza una notacién abreviada del tipo TMS(x1 /22) para referirse a las tasas marginales
de sustitucion.

TMS(z1/x9) representa la tasa marginal de sustitucién donde el numerador es la derivada respecto de
z9 v el denominador la derivada respecto de x1, es decir:

dro S
Oxo

Interpretacién: indica cuantas unidades de x5 deben cederse para obtener una unidad adicional de x1,
manteniendo constante el nivel de utilidad

De manera inversa, TMS(z2/x1) representa la tasa marginal de sustitucién donde el numerador es la
derivada respecto de x1 y el denominador la derivada respecto de xs, es decir:

dr, e
8.’1:1

Interpretaciéon: indica cuantas unidades de x; deben cederse para obtener una unidad adicional de x5,
manteniendo constante el nivel de utilidad

Interpretacién intuitiva

Cuando aparece una expresién como

ou

dry 5z,
— Ou
dl‘l 8_3132

se interpreta como: “cuanto debe reducirse xo para aumentar en una unidad x;, manteniendo constante
la utilidad”.

Una forma intuitiva de pensarlo es:
e El numerador es lo que se entrega o se cede

e El denominador es lo que se desea obtener
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9 Clasificacion de bienes y elasticidad

Conceptos clave

e Funciones de demanda: Representan la relacién entre la cantidad demandada de un bien y variables
como su precio propio, el precio de bienes relacionados y el ingreso del consumidor

¢ Derivadas parciales: Permiten analizar el efecto marginal de un cambio en una variable (precio o
ingreso) sobre la cantidad demandada, manteniendo constantes las demas

e Elasticidad: Es la medida de sensibilidad de la cantidad demandada ante cambios porcentuales en el
precio o ingreso, ayudando a clasificar el bien segiin su comportamiento

Clasificacion de bienes

1. Segun el precio propio

e Bienes tipicos: Al aumentar el precio del bien, la cantidad demandada disminuye. La mayoria de
bienes se comporta asi:
oQ

oP

<0

e Bienes Giffen: En situaciones excepcionales, el aumento en el precio del bien provoca un aumento
en su demanda, debido al efecto ingreso que supera al efecto sustitucién. No confundir con los bienes
Veblen, que son bienes de lujo demandados por sus caracteristicas de senalizar estatus econémico

oQ

% >0
o~

Intuicién: En condiciones normales, la relacién inversa (mayor precio, menor demanda) es esperada;
los bienes Giffen representan casos raros donde, por limitaciones presupuestarias, el aumento de precio lleva
a consumir méas del bien

2. Segun el precio del otro bien

e Bienes sustitutos: Si al aumentar el precio de un bien la demanda del otro aumenta, se considera
que los bienes son sustitutos. Esto ocurre cuando el consumidor opta por el bien relativamente mas
economico. Por ejemplo, marcas rivales: Coca Cola y Pepsi

9Q:
0P,

e Bienes complementarios: Si el aumento en el precio de un bien reduce la demanda del otro, se
clasifican como complementarios, ya que se consumen en conjunto. Por ejemplo, café y azicar

2Q:

<0
0P,

Intuicién: La existencia de bienes sustitutos permite al consumidor cambiar de producto al encarecerse
uno, mientras que los bienes complementarios se consumen conjuntamente para satisfacer una necesidad
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3. Segun el ingreso

e Bienes normales: La demanda aumenta al incrementar el ingreso del consumidor, la mayoria de

bienes tienden a ser normales 50
oG

9% 9
oI~

e Bienes inferiores: La demanda disminuye cuando aumenta el ingreso, ya que los consumidores optan
por bienes de mayor calidad. Por ejemplo, marcas de segunda linea

oQ
W<0

Intuicién: La clasificacién segin el ingreso refleja la capacidad del consumidor para ajustar sus hébitos
de consumo en funcién de su poder adquisitivo

Elasticidad de la demanda

La elasticidad cuantifica la sensibilidad de la cantidad demandada ante cambios en precios o ingresos

Elasticidad precio e ingreso

. . A PO
Elasticidad precio = Ag;g = aa—g
¢ Interpretacién (en términos absolutos):
— Si P 80
gar|” 1
la demanda es eldstica (sensible a cambios en el precio)
— Si P 8Q
Gap| < 1
la demanda es ineldstica (poco sensible)
— Si
PoQ| _
Q oP
la elasticidad es unitaria (la demanda se mueve exactamente en la misma proporcién que el
precio)
— Si ‘ )
% =0 (lo que implica que [@S% =0)

la demanda es perfectamente ineldstica (la cantidad demandada permanece constante sin im-
portar cambios en el precio)

e Aunque se presenta el concepto como elasticidad precio, esta nocién se extiende a la elasticidad
ingreso y a cualquier otra funciéon que admita derivadas parciales. Por ejemplo, la elasticidad ingreso

se define como:
sQ/@ _ 109
AI/T Q oI

Elasticidad ingreso =

donde [ representa el ingreso
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Bienes de lujo vs. bienes esenciales

La clasificacién de bienes en términos de lujo o esencial se basa en la elasticidad ingreso, la cual mide la
sensibilidad de la cantidad demandada ante cambios en el ingreso del consumidor. Es importante resaltar
que esta clasificacion se aplica inicamente a bienes normales

Bienes esenciales (necesidades basicas)

Para los bienes esenciales, la elasticidad ingreso se encuentra en el rango:

O< Er<i1
donde I 00
By =—~2%
= QoI

Esto significa que, ante un aumento porcentual en el ingreso, la cantidad demandada del bien aumenta en una
) Y

proporcién menor. Dichos bienes satisfacen necesidades béasicas y su consumo tiende a estabilizarse incluso

cuando el ingreso crece

Bienes de lujo

En cambio, los bienes de lujo se caracterizan por tener:
Er>1

Esto implica que un incremento porcentual en el ingreso genera un aumento porcentual mayor en la demanda
del bien. Estos bienes son adquiridos en mayor medida cuando los consumidores disponen de mayores recursos,
reflejando un comportamiento de consumo més discrecional

Ejemplos:

e Bienes esenciales: Alimentos bédsicos (por ejemplo, pan y arroz), medicamentos genéricos, vivienda

e Bienes de lujo: Ropa de disenador, automéviles de alta gama, joyeria fina

Ejemplo
Supongamos que la funcién de demanda de un bien se expresa como:
Q(P,I) =200+ 0.3 — 4P

donde P es el precio del bien e I es el ingreso del consumidor
Calculo de las derivadas parciales:
0Q Q

X =g, 22 =0
P oor 03

El signo negativo en % indica que, al aumentar el precio, la cantidad demandada disminuye (bien tipico).
El signo positivo en %—CIQ muestra que, al aumentar el ingreso, la demanda crece, lo que caracteriza al bien
como normal

Evaluacion en un punto especifico:

Sea P =15 e I = 500. Entonces:

Q(15,500) = 200 4 0.3 x 500 — 4 x 15 = 200 + 150 — 60 = 290
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Calculo de la elasticidad precio:
La elasticidad precio se define como:
P oqQ
Ep=——
Q oP

Sustituyendo los valores:
15

290
En valor absoluto, |Ep| & 0.207, lo que indica que la demanda es ineldstica (poco sensible a cambios en el
precio)
Calculo de la elasticidad ingreso:

Ep = —— x (—4) ~ —0.207

1
o 100
Q oI
Sustituyendo los valores:
. 500
Er = x 0.3 ~ 0.517
290

Esto significa que, ante un aumento del 1% en el ingreso, la cantidad demandada incrementa aproximadamente
en un 0.517%, también es ineléstica respecto al ingreso

Interpretacién respecto a bienes de lujo vs. esenciales:
Dado que 0 < E; < 1, el bien se clasifica como un bien esencial (o necesidad bésica), ya que la respuesta
de la demanda a cambios en el ingreso es relativamente baja
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10 Derivadas compuestas

En matematica aplicada a la economia es muy comin que una variable dependa de otra a través de funciones
intermedias. Por ejemplo, la cantidad demandada @ depende del precio P via @ = D(P), y el precio a su
vez depende de un impuesto ad-valorem 7 via P = Py(1 + 7). Esta composicion se modela como

y = g(h(z))

donde g y h son funciones diferenciables. Una pregunta que puede surgir es ;Cémo afecta el cambio en el
impuesto a la demanda? La respuesta de esta pregunta se puede encontrar a través de la derivada de una
funcién compuesta.

En una variable

Recordemos que si y = f(z) y « cambia de a a a + Az, definimos el incremento de y como
Ay = fla+Az) - f(a)

De acuerdo con la definicién de derivada,

Ay ’
N vEAL
Si denotamos por ¢ la diferencia entre el cociente incremental y la derivada, obtenemos
Ay
1i — 2y _ ! gl —
dim,e= Jim (52 - 7@) = 7@ - ) =0

Pero

Ay

Ay flla) = Ay = fl(a)Azx + eAx

Definimos € = 0 cuando Az = 0.
Asi, para una funcién f diferenciable, podemos escribir
Ay = f'(a) Az + e Aux, € — 0 cuando Az — 0 (5)

y € es funcién continua de Azx. Esta propiedad habilita la prueba de la regla de la cadena.

Prueba de la regla de la cadena

Supongamos u = g(x) diferenciable en a y y = f(u) diferenciable en b = g(a). Si Az es un incremento en x
y Au, Ay los incrementos correspondientes en u e y, entonces, aplicando (5) a g en a,

Au = ¢'(a) Az + 1Az = [¢'(a) + &1]Aw, g1 — 0 cuando Az — 0 (6)
De modo anélogo, aplicando (5) a f en b,
Ay = f'(b)Au + g2 Au = [f’(b) + Eg]Au €9 — 0 cuando Au — 0 (7)
Sustituyendo Awu de (6) en (7), obtenemos
A
Ay = [f'(b) +e2][¢'(a) + 1] Az, por lo tanto A—z = [f'(b) +e2] [d'(a) +&1]

Cuando Az — 0, la ecuacién (6) muestra que Au — 0; asi, 1 — 0 y e2 — 0. Luego

dy

A,
= tim 2=l [f0) + <] [¢(@) + 4] = £0)9'(0) = £ (9(a)) ¢'(0)
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Ejemplo
Funcién: y(z) = (1 + 2z)°.
Identificacién de la composicion:
glu)=v’,  h(z)=1+2z,  y(z)=g(h(z))

Derivadas de cada capa:
g'(u) =5u',  H(zx)=2

Aplicacion de la regla de la cadena:

Y (z) = ¢'(h(x)) - h'(x) =5(1 + 2VL) 2=10(1+ 21‘)4

Regla de la cadena (caso multivariable)

Un cambio At produce cambios Az = g(to + At) — g(to) y Ay = h(to + At) — h(ty). Por diferenciabilidad de
f en (‘r(]vy())v

0 0
Az = f(zo + Az, yo + Ay) — f(2o,%0) = a—i(xo,yo) Az + 8—5(%, yo) Ay + €1 (Ax, Ay) Az + eo(Ax, Ay) Ay,
donde €1 (Az,Ay) = 0y e2(Az, Ay) — 0 cuando (Az,Ay) — (0,0) (si (Az,Ay) = (0,0), definimos 1 =
Eg = 0)
Dividiendo por At,
Az Of Az Of Ay Az Ay
— = — + = Az, A Az, A
Al &E(ﬂﬁo,yo) A +8y(x0’y0) At +€1( z, Ay) — At + e2(Az, Ay) = INE
Como g, h son derivables en ¢y, se tiene Ax/At — ¢'(to) v Ay/At — B (tp); ademds At — 0 =
(Az, Ay) — (0,0), luego e1,e9 — 0. Por lo tanto,

i T

dt Ity At=0 At
of . Az Of Ay Az Ay
= g (roo) Jim 5 (ovgo) Jim S Jim e (A, Ay) lim T0 o+ T (A, Ay) B S

_/_/w_/ — ——m—————————
0 g'(to) 0 R (to)

_of / of /
= 32 (zo,10) 9'(to) + By (xo,y0) M (to).

Forma compacta. Usando 0z/0x = df/0x y 0z/0y = 0f /Dy, la regla queda
dz Oz dx 0z dy

dt 9z d + Oy dt

Un ejemplo mas complejo
Supongamos funciones diferenciables
z=f(z,y), z=2z(wv), y=y(u,v)
Ahora podemos encontrar dos derivadas z!, y 2/, las cuales se calculan con la misma regla que antes

Zy = [z Tyt fy Yus 2y = foly+ fy Yo
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Cuando hay mas dependencias de variables
En muchos problemas hay mas dependencias entre variables. El esquema general es
z = gur, ..., Um), u; = wi(T1,...,T,)

Aqui g es diferenciable en R™ y cada u; es diferenciable en R™.

Para cada variable bésica z; (j =1,...,n):
0z i dg Ou;
or; “— Ou; Ox;

Dependencias encadenadas
Cuando hay varias capas, se suman los productos de derivadas a lo largo de cada camino.

= s(t)

y = y(u,v), u = u(p,q), v=u(qs), p=p),q=qt), s=

Entonces

dy / N

pri Yu(Up P +ugq') + yu(vgq +v58")
Ejemplos

z=f(z,y) =2y, w=gt)=t>  y=h(t)=¢
Derivadas
dx . dy "
=e

« = 2wy, = 27 — =2, i
fo=2wy,  fy=c dt dt

dz  Ofdx Ofdy o o
dt — Oxdt  Oydt (2zy)(2t) + (27)(e")

Sustituyendo x =t y y = e':
d
== 2()()(20) + ()% = ate! +the! = ! (4t + 1)
Comprobacién directa. Como z(t) = z(t)?y(t) = (t?)%e! = tte

1 : , s
;f (t'e') = at’e’ +t'e! = e’ (4t +t*)
at

que coincide con el resultado obtenido por la regla de la cadena.

Otro caso
x=z(v,w) =v+w, y=yv,w)=v—w

z= f(z,y) = 2y’

Derivadas parciales y derivadas de las dependencias:
Ty =1, 2 =1, Yp =1, Yo = —1

f$:y27 fy:Qxy,

Regla de la cadena:
Zy = f.’l: Ty + ,fy Yu, Zw = f:I: Ty + f’y Yw
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Calculo:
=y 1+ (2zy) 1=y* + 22y, 2, =y> 1+ (22y)  (-1) =y* — 22y

Sustituyendo z=v+w, y=v — w:
zo=(v—w)*+2w+w)(v-—w)=@v-—w)|[v-w)+2v+w)]=(v—w)(3v+w)

zw = —w)? =2+ w)(v-—w)=(v—w)[(v-w)—2v+w)] =(v—w)(-v-3uw)
Comprobacién directa. Como z(v,w) = zy? = (v + w)(v — w)?

gz = (v—w)*+2(v+w)(v—w) = (v—w)(3v+w)
v

0= _ (v —w)? = 2(v+w)(v—w) = (v—w)(—v — 3w)

ow

coincidiendo con la regla de la cadena.
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11 Derivadas implicitas

Derivacion implicita: deduccion de la féormula y requerimientos

En muchos casos en matematicas y economia, las relaciones entre variables se presentan de forma implicita,
es decir, mediante una ecuacién de la forma

F(z,y)=0

donde y se define como funcién de x de forma implicita (i.e., y = f(x)). Para poder aplicar la derivacién
implicita, es fundamental cumplir con ciertos requerimientos y condiciones.

Requerimientos para la aplicaciéon de la derivacién implicita

1. Verificacion de la solucién: se asume que el punto de interés (xq,yo) satisface la ecuacidon, es decir,
F(z0,y0) = 0 (esto implica que yo = f(z0))

2. Diferenciabilidad de F'(z,y): la funcién F debe ser diferenciable en un entorno del punto de interés
(20,%0)- Esto garantiza que existen las derivadas parciales F, y F,

3. No nulidad de la derivada parcial respecto a y: se requiere que Fy(xo,y0) # 0. Esta condicién es
esencial para aplicar el Teorema de la Funcién Implicita, el cual asegura que en un entorno de (zg,yo)
se puede expresar y como una funcién diferenciable de z (i.e., y = f(z))

Deduccién de la formula de la derivada implicita

Consideremos la ecuacién
F(z,y) =0

donde suponemos que y = f(z) y F es diferenciable en un entorno de (xg,yo). Como F(x, f(x)) = 0 para
todos los = en dicho entorno, derivamos ambos lados de la igualdad con respecto a z, aplicando la regla de
la cadena:

P, (@) = Fule, [(@) + Fy(a, £(2) - /() =0

Aqui, F, y F, representan las derivadas parciales de I’ con respecto a = y y, respectivamente. Despe-
jamos f'(x) de la siguiente forma:

Fy(z, f(x)) - f'(z) = —Fo(, f(x))

F,(x, f(x))

=  fl(z)=—
Esta es la formula general para la derivada de una funcién definida de forma implicita.
Ejemplo
Consideremos la ecuacion de la circunferencia:
2?2 +y? =25
Definimos la funcién F(z,y) como:
F(x,y) =2 +y*—25=0

Observamos que para cualquier punto (x,y) sobre la circunferencia se cumple F(x,y) =0
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Paso 1: calcular las derivadas parciales Se tiene:
Fo(zy) =20y Fylz,y) =2y

Paso 2: aplicar la férmula de la derivada implicita Utilizando la férmula:

dy _ _Falz,y) 2z
de Fy(z,y) 2
dy «z
de vy

Derivacion implicita: funcién de dos variables independientes

En algunos problemas en matematicas y economia, las relaciones entre variables se presentan de forma
implicita mediante una ecuacién de la forma

F(z,y,2) =0

donde z se define implicitamente como funcién de z e y (i.e., z = f(z,y)). Para aplicar la derivacién implicita
en este contexto, es fundamental cumplir con ciertos requerimientos y condiciones.

Requerimientos para la aplicacion de la derivacién implicita

1. Verificacion de la solucién: se asume que el punto de interés Qo = (xo, Yo, 20) satisface la ecuacion, es
decir, F(xo,yo0,20) = 0 (lo que implica que 2o = f (0, y0))

2. Diferenciabilidad de F(z,y, z): la funcién F' y sus derivadas parciales Fy, F,, y F, deben existir y ser
continuas en un entorno del punto Qg

3. No nulidad de la derivada parcial respecto a z: se requiere que F.(zo, Yo, 20) # 0. Esta condicién es
esencial para poder expresar z como una funcién diferenciable de z e y en el entorno de (g

Deduccién de las formulas de las derivadas parciales

Consideremos la ecuacién
F(z,y,2) =0

donde suponemos que z = f(x,y) y F es diferenciable en un entorno del punto Qo = (o, yo0,20). Como
F(z,y, f(z,y)) = 0 para todos los (z,y) en dicho entorno, derivamos ambos lados de la igualdad con respecto
a z e y, aplicando la regla de la cadena.

Aplicacion de la regla de la cadena

Para clarificar la deduccidn, se puede reescribir la funcién F(z,y, z) definiendo u =z, v =y y z = f(z,y),
de forma que

w= F(u,v,2z) =0
Aplicando la regla de la cadena respecto a x:

ow OF ou OF 0Ov OF 0z

P ou 0z T ov or T 9r or
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Como%zly%zo, se obtiene:
oF (OF 92 _ 0:_ F
ox 0z Oz or  F,

El mismo procedimiento se aplica para obtener g—;

Estas férmulas permiten calcular las derivadas parciales de z = f(x,y) de forma implicita, siempre y
cuando se cumplan los requerimientos indicados.

Ejemplo

Consideremos la funcion:
F(x,y,2) = 2%y +sin(z) — zcos(y) + 22 =1 =0
Observamos que para cualquier punto (z,y,z) que satisface esta ecuacién se define implicitamente z

como funcién de z e y (i.e., z = f(z,y))

Paso 1: calcular las derivadas parciales Se tiene:
Fo(z,y,z) = 2xy

Fy(z,y,2) = 2% + zsin(y)
F.(z,y,z) = cos(z) — cos(y) + 2z

Paso 2: aplicar la formula de la derivada implicita Las férmulas para las derivadas parciales de

z = f(x,y) son:
0z Fi(x,y,2) 0z Fy(x,y,2)

0r ~ Fnye2) U 0y Flnyo2)
Paso 3: evaluar en un punto Elijamos el punto Qo = (1,1,0). Verificamos que:
12-1+4sin(0) —0-cos(1) +0? —1=1-1=0

por lo que Qg pertenece a la superficie definida por F(z,y,z) =0
Evaluamos las derivadas parciales en Qq:

Fy(1,1,0)=2-1-1=2
F,(1,1,0) =12 +0-sin(1) =1
F,(1,1,0) = cos(0) —cos(1) +2-0 =1 —cos(1) ~ 0.46

Por lo tanto:

0z 2
=——— & —4.35
ox ’(1,1.0) 1 —cos(1) 7
2 1
02 ~ —2.17

Ay ’(1,1.0) T cos(1)
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Derivadas implicitas sucesivas
Consideremos la funcién implicita:

F(x,y,2) =2sin(z) —zz+y> —1=0
que define a z = z(z,y). Se desea calcular las derivadas de segundo orden:

Zzxy Rwy, Ryxs Ryy

evaluadas en el punto Qo = (1,1,0)

Paso 1: derivadas de primer orden
Dado que F(z,y, 2(z,y)) = 0, diferenciamos implicitamente respecto de x:

F
Fo+F, 2, =0 = 2z,=-——
+ z z T

Andlogamente, derivando respecto de y:
F
Fy+F,-2,=0 = z,=--2
F.

Calculamos ahora las derivadas parciales necesarias:

oF oF oF

F=Ge = sy =W sy sl e
Entonces: .
z 3y?

e 2cos(z) —x’ T

2cos(z) — x
A partir de estas expresiones, aplicamos la regla del cociente para obtener las segundas derivadas sin
evaluar numéricamente hasta el final.

Calculo de z,,

z

Derivamos Zy = m

respecto a x:

-2 - = %(2005(2)—33)—,2%
Ryx = dx \ 2cos(z) — x - (2cos(z) — x)?

d(2cos(z) —x) . dz B .
o = —2sin(z) In 1=—-2sin(z)z, — 1

Sustituyendo:
- (22)(2cos(z) — ) — 2(—2sin(2)z, — 1)
o (2cos(z) — x)?
2z(2cos(z) — ) + 2(2sin(2)z, + 1)
(2cos(z) — x)?
Evaluando en Qo = (1,1,0) (con z =0, z, = 0,sin(0) = 0,cos(0) = 1,z = 1):
(0)(2(1) — 1) +02(0)(0) +1) _ 040 _
(2(1) —1)2 12

Zrx =

Ze2(1,1) =



https://cabraljuan.github.io

Juan Andrés Cabral

Calculo de z,,

Derivamos z, = respecto a y:

P
2cos(z)—x

L . _ H(2cos(2) — ) - pdZeoslz)=r)
o dy \ 2cos(z) — (2cos(z) — x)?

Calculamos las derivadas necesarias para el numerador:

dCeos(z)—w)  ds
4y -2 sm(z)d—y — 0= —2sin(z)zy
Sustituyendo:
- (2y)(2cos(z) — x) — 2(—2sin(2)2y)
xy (2cos(z) — x)?
. zy(2cos(z) — x) + 2zsin(z) 2,
W (2cos(z) — x)2

Evaluando en Qo = (1,1,0) (con z =0, z, = —3,sin(0) = 0,cos(0) = 1,z = 1):

) (=321 -1 +20)(0)(=3) _ (=3)1)+0 |
Zy(11) = 2(1) - 1) =~

Por simetria de las derivadas cruzadas (asumiendo que se cumple el teorema de Schwarz):
Zye = Zzy

Calculo de z,,

.3y2

Derivamos Zy = —m

respecto a y:

2 )
Zyy = i 737112 o d(zz; )(zcos(z) — x) — (3y2)d(2w27;))
Wldy \ 2cos(z) —x) @oos(s) — 22

Calculamos las derivadas necesarias para el numerador:

d(2cos(z) — x)

y = —2sin(z)z, (calculado antes)
Y

Sustituyendo:

_ (6y)(2cos(z) — x) — (3y*)(—2sin(2)z,)

v~ (2cos(z) — x)’

.  6y(2cos(z) — ) + 6y sin(z)z,
vy (2cos(z) — x)2

Evaluando en Qo = (1,1,0) (con y =1,z = 0,2, = —3,sin(0) = 0,cos(0) =1,z = 1):

. __6MEM - +6(1)*0)(=3) __6(MH+0 _
(b 1) =~ 2(1) —1)2 =z
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12 Derivadas implicitas en sistemas de ecuaciones

Derivacion Implicita en Sistemas de Ecuaciones con una variable
independiente

Asi como una superficie puede estar definida en forma implicita por una ecuacién, una curva en el espacio
puede estar definida implicitamente por un sistema de dos ecuaciones

F(r,y,2)=0
G(z,y,2) =0

Por ejemplo, puede ocurrir que el sistema defina implicitamente a y = f(x) y z = g(z) es decir, que
ambas dependan de una tnica variable independiente. En ese caso, se dice que el sistema define a dos de las
tres variables como funciones de la restante

Requerimientos para Aplicar la Derivacién Implicita

Para que sea posible derivar y y z respecto a x se deben cumplir las siguientes condiciones
1. Verificacién de la solucién: El punto de interés (xg, yo, 20) debe satisfacer ambas ecuaciones es decir
F(z0,90,20) =0 'y G(z0,Y0,20) =0

2. Diferenciabilidad de F' y G: Ambas funciones deben ser diferenciables en un entorno del punto, con
derivadas parciales continuas

3. No anulacion del Jacobiano respecto a y y z: El determinante

_O(F,G) F, F,
/= oy, z) _’Gy G 70

debe ser distinto de cero para que el sistema tenga solucién tnica para dy y &
dx dzx

Deduccién de las Férmulas de Derivadas

Partimos de las ecuaciones implicitas

F(z,y,2) =0, G(z,y,2) =0
Por la definicién de la derivada y la regla de la cadena, al derivar la igualdad respecto a = obtenemos

d OF oF dy OF dz
—F s s = 5. Y, . LY, a4 T\ Y, —=0
TP @), 2(0) = 5o w2 + G ) o+ G
Notamos que en este proceso se entiende que la derivada de x respecto a si mismo es 1 Asi, se llega directamente

a

dy dz
Fr(xvyaz) +EJ(I,y,Z) % +Fz(l',y,2') % =0

De manera similar, si ademds se tiene otra funcién G(z,y,z) = 0 (con y y 2z también funciones de z)
aplicamos la regla de la cadena para obtener

d dz
Gw(x,y,z) + G"/(‘r7y’z) % + G2<x7yvz) % =0
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Por lo tanto tenemos el siguiente sistema

Fy +Fygg+Fzg;:
G +G7ldac+szz_

dz __
Fy da: + I dac =—F
Gy dx + GZ d:r = _Gm

Escribimos el sistema en forma matricial

(& &) (&)--(¢)

Resolucién con Regla de Cramer

Este sistema lineal en las incégnitas 2y 2; se resuelve usando determinantes

_Fx Fz Eg _EE
@ o 7G{l? G:./ . % o Gy 7G.’L‘
de J Y de J

También puede escribirse de forma compacta como cocientes de derivadas parciales mixtas

dy  O0F.G)/o(w,z)  dz I(F,G)/0(y,x)

dr ~ O(F.G)[0y,2) 7 dx O(F,G)/d(y.z)

Ejemplo

Consideremos el sistema de ecuaciones
zy+z2=2
r—y+22=0

que define implicitamente a y y z como funciones de z (i.e., y = y(z) y z = z(z)). Para aplicar la derivacién
implicita, definimos

F(z,y,z)=ay+2—-2=0 G(r,y,2) =2 —y+22=0

Paso 1: Calcular las derivadas parciales Para F(z,y, z)

=y, Fy=z F, =1

Para G(x,y, 2)
G,=1, G,=-1, G,=2z

Paso 2: Diferenciar implicitamente y escribir el sistema Aplicando la regla de la cadena, tenemos

dy dz dy dz
dy d
G+ Gy =2 +G— 0 = 1-Z12.2% -9
dx dx

Reorganizando, obtenemos

dy dz _
Ty Tar =Y
_dy dz _ _

dz+22dm_ 1
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Paso 3: Escribir el sistema en forma matricial

El sistema se puede expresar de la siguiente manera
d
F, F., = __(F
G, G.)\%&
es decir,

dz Gw)
z 1 g—g _ (v
-1 2z)\%&)
Paso 4: Resolver el sistema con la Regla de Cramer

1
El determinante del sistema (Jacobiano) es
T 1
J = 1 22" =2zz+1
Luego, aplicando la regla de Cramer, se tiene
Para %
ara ——
dx
-y 1
dy |-l 22 (=y)(22) - ()(=1) _ —2yz+1
doe J N 2zz + 1 2z 41
dz
Para —
ara -
T -y
dz |1 —1| x(=1)—(=y)(-1) -—=z—y
de J N 20z +1

T 2wz 1
pendientes)

Derivacion Implicita en Sistemas de Ecuaciones (2 Variables Inde-
Planteamos la situacién en la que dos ecuaciones

F(z,y,u,v) =0 y G(z,y,u,0)=0
definen implicitamente dos funciones de dos variables independientes

u=h(z,y)

y v=m(z,y)
Deduccién de las Formulas de las Derivadas Parciales
Partimos de las ecuaciones implicitas

Flz,y,u,0) =0 y G(z,y,u,v) =0
la siguiente manera

Para obtener las derivadas parciales de u y v respecto de x (manteniendo y constante) procedemos de
(1) Derivadas parciales respecto a z:
tiene

d

OF OF Ou OF Ov
F - 4 7 ==
(2,9 ul, ), o(e,y) = 5o+ G 5o+
Aqui se entiende que, al derivar con respecto a z, la variable y se considera constante

Consideramos v = u(z,y) y v = v(x, y). Entonces, aplicando la regla de la cadena a F'(x,y,u,v) = 0 se
- — 0
dx ov Ox
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De manera similar, al derivar G(z,y,u,v) = 0 respecto a = se obtiene

d 8G 0G Ou  0G Ov
—G(w,y,u(m,y), (CE y))

dx 8u8x+8v 83:_0

Podemos escribir el sistema resultante como

Fo(z,y,u,v) + Fy(z,y,u,v) dx+E,(LE Y, u,v) 5r v — ()
Gm(x,y,u,v) +Gu(x,y,u,v) Oz +G (LE Y, u, U) oz = 0

Reorganizando para aislar las derivadas parciales de u y v se tiene
au ov __
{Fu oz + Fy 890 —F
ou _
Gu gy + G, 2 G = —Gy

Este sistema se puede escribir en forma matricial

F, F, gw _(F,
G, G, G,
(2) Derivadas parciales respecto a y:

Ahora, derivamos con respecto a y (manteniendo z constante). Aplicando la regla de la cadena a
F(x,y,u,v) = 0 se obtiene

d OF OF Ou OF Ov
7F(I’,y,u($,y) U(I7y)) =

dy oy Touay tavay "
De forma andloga, para G se tiene
d 0G  0G du  9G dv
dfyG(ﬂf’y,U(ﬂf,y)vv(%y)) =By - oy *t 5 oy 0

El sistema resultante es

{F v(@, y,u,v) + Fy(z,y,u, v)a + Fy(x,y,u, U)a”—O

G ( ,y,u,v)+G ( ,y,u,v) ay+G ( z,Y,u, U) {)y :0

Reorganizando se tiene

o o
EL@Z Fvaziny
o]
G2 +G, 2 =0,

(& &) (k) --(&)

En forma matricial

Resolucion con Regla de Cramer:

Sea
F, F,
/= ‘Gu G,
Entonces, aplicando la regla de Cramer para el sistema respecto a x obtenemos
_Ezr FL‘ Fu _ET
ou o 7G:1: G( v - Gu 7G41,‘

dr J or J
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Y para el sistema respecto a y

F, —F,
v |Gy —Gy
oy J oy J

De esta forma, hemos obtenido las cuatro derivadas parciales que describen cémo varian u y v respecto

dexey
ou OJv Ou Ov

%a %5 aiya aiy
Ejemplo

Consideremos el siguiente sistema de ecuaciones

{F(m,ymﬂ)) =zut+yv—2=0
2

G(z,y,u,v)=u*—v+zy=0

el cual define implicitamente a u y v como funciones de z e y es decir, u = u(x,y) y v = v(z,y)

Paso 1: Calculo de las Derivadas Parciales de 'y G

Para la funcién
F(z,y,u,v) =zu+yv—2

se tiene

Fr=u, F,=v, F,=z F,=

Para la funcién
G(%y’%“) = U2 —v+zy

se obtiene
Gy=y, Gy=2, Gy=2u, G,=-1

Paso 2: Derivadas Parciales respecto a =

Dado que u = u(z,y) y v = v(z, y) aplicamos la regla de la cadena a cada ecuacién (manteniendo y constante)
Para F(z,y,u,v) =0

Fo+Fou,+F,v, =0 — u+4+zu,+yv,=0
Para G(z,y,u,v) =0
Gy +Guus +Gov, =0 = y+2uu,—v, =0

Escribimos el sistema en forma matricial

(& &)

es decir,
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Definimos el Jacobiano del sistema (en las variables dependientes u y v)

r oy
J = =z(=1) = (y)(2u) = —z — 2uy
2u —1
Aplicando la regla de Cramer
Para u,
_Fa: v —Uu Yy
ou |G, G |-y -1
ox J -z —2uy

Calculamos el determinante

Por lo tanto,

u+y?
e —x —2uy
Para v,
F, -F, T —u
v ‘Gu -G, 2u  —y
or J e 2uy

Calculamos el determinante

z(—y) — (—u)(2u) = —zy + 2u?
Por lo tanto,
—xy + 2u?

Uy =
-z —2uy

Paso 3: Derivadas Parciales respecto a y

Ahora, diferenciamos con respecto a y (manteniendo x constante)
Para F(z,y,u,v) =0

Fy+Fouy+F,v,=0 = v+zu,+yv,=0
Para G(z,y,u,v) =0
Gy+Guuy+Gyvy=0 = z+2uuy—v,=0

El sistema en forma matricial es el mismo

() (7))

Aplicando de nuevo la regla de Cramer

Para u,
—-F, F, —v Yy
Ou -G, G, -z -1
oy J  —z—2uy
Determinante
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Por lo tanto,

Para v,

Determinante

Por lo tanto,

v+ Y
Uy = ————"—
—r —2uy
F, —F, r —v
v |Gy —Gy 2u —x
oy J -z —2uy

z(—z) — (—v)(2u) = —2° 4 2uv

—22 4+ 2uv
—x —2uy

Uy =
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13 IS-LM

El modelo IS-LM determina simultdneamente el ingreso real Y y la tasa de interés r en el corto plazo,
mediante el equilibrio en dos mercados: el de bienes y servicios (curva IS) y el monetario (curva LM).
Ademads, incorpora la relacién entre ingreso y recaudacion fiscal.

Y=CYa)+1(r)+yg
M, = L(Y,r)
Y=Y -T(Y,0)

1. Mercado de bienes y servicios (IS)
Y =CYa) +1(r)+yg
e Y: produccién (o ingreso) agregado.
e C(Yy): consumo de los hogares, funcién creciente de ingreso disponible Yj.
e I(r): inversién de las empresas, funcién decreciente de la tasa 7.
e ¢: gasto publico, exdgeno.

La curva IS (“Investment—Saving”) es el conjunto de (Y, r) que satisfacen esta identidad.

2. Mercado monetario (LM)
M, = L(Y,r)

e M,: oferta real de dinero (stock), fijada por la autoridad monetaria.
e L(Y,r): demanda de dinero, creciente en Y (0L/9Y > 0) y decreciente en r (OL/0r < 0).

La curva LM (“Liquidity preference-Money supply”) es el conjunto de puntos de (Y,r) que igualan oferta y
demanda de dinero.

3. Ingreso disponible
Y=Y — T(Y, 9)

donde T(Y, 0) es la recaudacion fiscal, funcién creciente de Y. El ingreso disponible Yj es el que efectivamente
determina el consumo.

Resoluciéon del modelo IS-LM por derivacion implicita

Partimos del modelo:
Y = C(Yd) —|—I(7") +g
M, =L(Y,r)
Yo=Y -T(Y,0)
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Variables ex6genas
g Gasto publico
M, | Oferta real de dinero (stock monetario)
0 Pardmetro(s) fiscales en T'(Y,0)

Variables endoégenas
Y | Ingreso (produccién) de equilibrio
Tasa de interés de equilibrio

<

Hipoétesis de comportamiento:
0<C'(Y-T(V,0) <1, 0<Ty(Y,0)<1, I'(r)<0, Ly(Y,r)>0, L,(Y,r)<0, Ty(Y,0)>0
Sustituyendo Yy en la primera ecuacién obtenemos dos ecuaciones en las variables endogenas Y y 7:
F(Y,r:9,0) = Y = C(Y =T(¥,0)) = 1(r) =g = 0
G(Y,r;M,) = LY,r)— M, =0

oy  or
El objetivo es encontrar D0 y 0" Es decir, el efecto que tiene un aumento del gasto publico en el
g g
producto y en la tasa de interés.

Paso 1: Derivadas parciales

Derivamos ambas ecuaciones respecto a g, recordemos que Y depende de g, también r depende de g por lo
tanto debemos utilizar regla de la cadena:

’_87F67Y+67Fﬁ+8£@_
Y= 8y ag " ordg " 9909

_ 09GOy  0Gor 0Gog _
9= 5y 8g " ordg " 8gdg

Derivamos ambas ecuaciones respecto a g, manteniendo M,, y § constantes:

0

G’ 0

0 , ay  , [ Or B
a—g[YfC’(YfT(Y,G)) — I(r) —g} - (1fc (Y = T(Y,0)) [lny(Y,G)}) 9g 15, ~1=0
0 oY )
o [L(Y,r) — M,] = Ly (Y,r) 9y F L) a—; =0
9 , oYy ,, .\ Or _
%[Y—C’(Y—T(Yﬁ)) — I(r) —g} = (1 — (Y —T(Y,0) [1 —Ty(y,e)]) 5y )5, —1=0
0 oY 0
o [L(Y,7) — M,] = Ly (Y,r) 5y L) 5; =0
Paso 2: Sistema matricial
De aqui obtenemos el sistema lineal
oY
1-C'(Y-T(Y,0) [1-Ty(Y,0)] —1I'(r) 2 | (1
Ly(Y.7) L)\ ] \o
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Paso 3: Resolver con la Regla de Cramer
El determinante del sistema es
J=[1-C(Y-T(),0)[1-Tyv(,0)]] L.(Y,r) — [-I'(r)] Ly(Y,7)

Por Cramer,

1 =TI'(r)
oy |0 L(Yir)| 1-L(Y,r) L(Y,r)
dg J J T
1-C'(Y -T(Y,0)) 1 - Ty(Y,0)] 1
ar Ly(Y,r) 0  —Ly(v,r)
dg J B J

Paso 4: Signos e interpretaciéon
Dado que
0<C'(Y-T(V,0)) <1 0<Ty(Y,0) <1 I'(r)<0 Ly(Y,r)>0 L, (Y,r)<0

se cumple
v 1—C'(Y—T(Y,9)) M-Ty(Y,0)] >0 —1TI'(r)>0

Por tanto el determinante

0<-<1
J= [1—(]’(Y—T(Y,6)) X (1—TY(Y,9))} x L(Y,r) — (=I'(r)) x Ly(Y,r) < 0
0<-<1 0< - <1 <0 >0 >0
>0

Como L, < 0, Ly > 0, el numerador de 0Y/dg es negativo y el de dr/dg también es negativo:

oY L, or — Ly
— = >0 — = >0
dg J dg J

Cuando el gobierno aumenta su gasto g, se desencadenan dos efectos:

Mads demanda = m4s produccién ()

e (iasto directo: el gobierno inyecta recursos pagando obras, sueldos, compras de insumos, etc.

e Cadena de efectos: esos pagos se convierten en ingresos para empresas y trabajadores, que a su vez

consumen parte de ese ingreso extra, generando mas ventas e ingresos en otros sectores.

e Multiplicador: cada unidad de gasto publico produce mas de una unidad de aumento en el ingreso

agregado, pues el dinero circula y se vuelve a gastar varias veces.

Mayor Y = mayor demanda de dinero = sube r

e Demanda de dinero transaccional: al crecer Y, hogares y empresas realizan més transacciones y nece-

sitan mas liquidez.

o Curva LM: L(Y,r) crece con Y y cae con r. Con M, fijo, un aumento de L empuja la tasa r al alza

hasta reequilibrar oferta y demanda monetaria.

e Crowding-out parcial: al subir r, el crédito se encarece y la inversion privada se modera, atenuando algo

el impulso inicial sobre Y, pero sin anularlo.
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14 Homogeneidad

Definicién de Homogeneidad

Una funcién F': R} — R se dice homogénea de grado k si, para todo A > 0y todo x = (x1,...,2,) € R}, se

cumple
F(\xy, ..., xn) = AN F(ay, ... z,).

Cuando k = 0, se dice que la funcién es homogénea de grado cero.

Ejemplos

1. Homogeneidad de grado 1. Sea
F(z,y) = 3z + by.

Entonces, para cualquier A > 0,
F(Az, \y) = 3(A\x) + 5(\y) = A (3 + 5y) = A F(z,y).
Por tanto, F' es homogénea de grado k = 1.

2. Homogeneidad de grado 0 (relacién de precios). Sea

x
G(z,y) = —.
(z,9) ;
Para A > 0,
Ar oz
Gz, \y) == == =2G(z,y).
() = 5 = £ = X0 G(ay)

Asi, G es homogénea de grado k = 0.

Propiedades de las Funciones Homogéneas
1. Multiplicacién de escala: Si F' es homogénea de grado k, entonces para todo A, u > 0
FOwx) = O)* F(x) = A F(ux).
2. Combinacion lineal: Si F' y G son homogéneas de grado k, y a,b € R, entonces
H(x)=aF(x)+bG(x)
es homogénea de grado k.
3. Producto: Si F' es homogénea de grado k y G de grado m, entonces
(F-G)(x) = F(x) G(x)
es homogénea de grado k + m.

4. Cociente: Si G(x) # 0y F, G son homogéneas de grado k y m respectivamente, entonces
F F(x)
&)=
G G(x)

5. Derivadas: Si F' es homogénea de grado k y diferenciable, entonces todas sus derivadas parciales de
orden m son homogéneas de grado k — m.

es homogénea de grado k — m.
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Teorema de Euler para Funciones Homogéneas

Teorema (Euler). Sea F': R? — R una funcién diferenciable y homogénea de grado k. Entonces

n

oF
Z:zi%(xl7""x") =kF(xz1,...,2,).

Demostracién. Dado que F' es homogénea de grado k, para todo A > 0 se cumple
F(Ax1,\za, ..., \xp) = NN F(z1, 29, ..., xp).
Definamos la funcién de una sola variable
O(\) = F(Azy, Aza, ..., xy).

Por la homogeneidad, también
N = N F(xy,...,2).

Como F es diferenciable, ® es diferenciable y podemos derivar ambas expresiones respecto a .

e Por la regla de la cadena,

" OF d
d'(\) :Z '()\acl,...,)\xn —)\ (Az;) = Z@xz A1,y Axp) o

= (/\IC (xl,...,xn)) = kN R(2, .. ).

Igualando ambas expresiones para ®'()),
le Ao:l,...,)\xn):k/\kle(:cl,...,xn).

Finalmente, evaluamos en \ = 1:

; 1y Zy) =kF(x1,...,2,),
;L()% , Ty (T1,...,2p)

como queriamos demostrar.

Ejemplo

Consideremos la funcién polinémica
F(z,y) = 23 + 229>

1. Verificacién de homogeneidad. Observamos que cada término es de grado 3:
(Az)3 = X323, 2 (\z) (My)? =2\ 92

Por tanto,
F(az, \y) = (Ae)® +2 (Aa) (Ay)? = X3 (¢ + 22 9%) = N F(z,y),

y concluimos que F' es homogénea de grado k = 3.


https://cabraljuan.github.io

Juan Andrés Cabral

2. Derivadas parciales.

0
Fy(z,y) = %(x3+2xy2) =322 + 297,
0
Fy(z,y) = a—y(x?’ +2zy%) =4dzy.

3. Comprobacion del Teorema de Euler. El teorema de Euler establece que, si F' es homogénea de
grado 3, entonces

v Fy(r,y) + yFy(e,y) = 3F(x,y).
Calculemos el lado izquierdo:
z(32° +2¢%) + y(day) = 32° + 22 y® + 4o y® = 32° + 62>

Y el lado derecho:
3F(z,y) = 3(3:3 + 2xy2) =323 + 62y,

Como coinciden,
e Fy,+yF,=3F(x,y),

confirmamos que el teorema de Euler se cumple.

Interpretacién Econémica

En economia, la homogeneidad y el Teorema de Euler tienen aplicaciones directas en teoria de la produccién
y en demanda:

e Funciones de produccién con rendimientos a escala: Si la funcién de produccién ¥ = F(K, L)
(capital K, trabajo L) es homogénea de grado k:

FO\K,\L) = \*F(K, L),
entonces:

— k = 1 implica rendimientos constantes a escala: duplicar todos los insumos duplica la produccién.
— k > 1 implica rendimientos crecientes a escala: duplicar insumos més que duplica la produccién.
— k < 1 implica rendimientos decrecientes a escala: duplicar insumos menos que duplica la pro-

duccién.

¢ Demanda homogénea de grado cero en precios e ingreso: Una funcién de demanda z;(p1, . . ., pn, M)
(precios pj, ingreso M) es homogénea de grado cero:

xl()‘p177)‘pn7AM) = -Ti(p17~-~,pn,M)-

Esto significa que si todos los precios y el ingreso cambian en la misma proporcién, las cantidades
demandadas no varian: sélo importan los precios relativos y el poder de compra real.

e Elasticidades parciales y grado de homogeneidad: Sea F(K,L) una funcién de produccién
diferenciable y homogénea de grado k. Definimos las elasticidades parciales de la produccién con
respecto a cada factor como

oF K OF L

KTOK F(K, L)) *T 9L F(K,L)

Aplicando el Teorema de Euler:

K Fg(K,L)+ LFL(K,L)=kF(K,L),
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y dividiendo ambos lados por F (K, L), obtenemos
ex +ep =k.

Interpretacion: la suma de las elasticidades parciales de la producciéon respecto al capital
y al trabajo coincide con el grado de homogeneidad de la funcion. Econémicamente, esto
significa que los rendimientos a escala coinciden con la suma de elasticidades parciales

— Sieg +er =k =1, rendimientos constantes a escala.

— Sieg +er =k > 1, rendimientos crecientes a escala.

— Sieg +er =k <1, rendimientos decrecientes a escala.
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15 Autovalores y autovectores

Definicién de autovalor y autovector

Sea A € Kn*
Un escalar A € K es autovalor de A si existe un vector v € K™\ {0} tal que

Av = Av
El vector v que satisface esta igualdad se llama autovector asociado al autovalor A

Polinomio caracteristico
Definicién
Sea A € K", El polinomio caracteristico de A se define como

xa(A) = det(A — /\[)

Co6mo hallarlo

1. Formar la matriz A — Al
2. Calcular det(A — AI) como funcién de A

3. Simplificar el determinante para obtener un polinomio en A

Ejemplo para matriz 2 x 2

Sea ,
)
Entonces
A== <acA dEA>
y

>
—
—
>~
S~—
Il
o
=]
7N
S
>
Q.
| o
>
N
Il
—
Q
\
>
N
—
QL
\
>~
N
\
>
o

Calculo de autovalores y autovectores

Procedimiento

1. Resolver x4(\) = 0 para obtener los valores propios A1, Az, As, ...

2. Para cada \;, resolver (A — A\;I) v = 0 buscando vectores no nulos
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Ejemplo numérico para matriz 2 x 2

Sea,
2 1

= (1 2)

Entonces
2 1 A0 2— A\ 1
A_M_(l 2)_(0 /\> _< 1 2—>\)

por lo que

2— )\ 1

XA(A)zdet(A—)J)zdet( 1 2_>\>:(2—)\)2—1:/\2—4>\+3

Resolvemos

AN —4\+3=0
obteniendo

Calculo paso a paso de los autovectores
2 1 1 0 1 1

A_I:<1 2)‘(0 1):<1 1)
1 1 T\
1 1) \y)

De aqui y = —x, por lo que un autovector es

() or (). oo

Para \; =1 Calculamos

Resolvemos el sistema

Lo que equivale a la ecuacién tnica

Tomamos v = (1,—1)7

Para A\ =3 Calculamos

Resolvemos el sistema
Equivalente a
Por lo tanto,

Tomamos vy = (1,1)7

., . 1 1
En conclusion los autovectores asociados son v1 = (1) para A =1y vy = <1> para A =3
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Relacion entre coeficientes del polinomio caracteristico, traza y de-
terminante

Sea el polinomio caracteristico de A de grado n:

Xa(\) =det(A =) = A"+ c, A" P+ e dFo

Coeficientes y autovalores

Si A1,..., A, son las raices de xa:

n

Cp_1 = — Z/\zn, Co = (*1)71 H)‘f?
i=1

1=1

En palabras: el coeficiente ¢,,_1 representa el negativo de la suma de todos los autovalores, reflejando que la
traza de A coincide con dicha suma. Por su parte, cg corresponde al producto de los autovalores multiplicado

por (—1)™.

Traza y determinante

Recordando que:

i=1

Existe una relacién entre autovalores y traza y determinante:

i Ai = tr(A4), ﬁ A = det(A)
i=1 i=1

En particular, paran =2y A = (Z Z)

xa(\) =A% — (a+d)X\ + (ad — be),
por lo que

tr(A) =a+d, det(A)=ad—bc
Ejemplo numérico
Para la matriz -

(1)
sus autovalores son \; =1y A\s = 3. En este caso,
tr(Ad) =242=4=X\+X =143, det(4)=2-2-1-1=3=X\X=1-3
Ademads, el polinomio caracteristico calculado fue
xa(\) =A% —4\+3
De donde se observa que:
e El coeficiente de A es —4, que coincide con —(A; + A2) = —(1 4 3).

e El término constante es 3, que coincide con el producto A1 - Ao =1 - 3.
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Raices iguales y multiplicidad

Multiplicidad algebraica
Sea A € K"*™ y X\ un autovalor de A.

e La multiplicidad algebraica de A, denotada mult,ie(X), es el grado con que A aparece como raiz del
polinomio caracteristico x a(A).

XAA) = (A= A)™ (A= Ap)™F,  multag(A;) = m,.

e Obsérvese que Zle m; = n, es decir, la suma de todas las multiplicidades algebraicas es el grado del
polinomio caracteristico.

Multiplicidad geométrica

Para cada autovalor A\, definimos su multiplicidad geométrica como
multgeom (A) = dim (ker(A — A1)

Donde ker() es el conjunto de todos los vectores que se envian al vector cero (espacio nulo). Es el niimero
de vectores linealmente independientes que generan el espacio propio asociado a .

Relacion entre ambas multiplicidades

Para todo autovalor A de A se tiene siempre:

1 < multgeom(A) < multag ()

Ejemplo numérico

Considérese
2 1
2=(; 2)

XB()‘) =(2- /\)2

Su polinomio caracteristico es

luego A = 2 tiene mult,s(2) = 2. En cambio,
Calculo de los autovectores para A =2 Partimos de

0 1
poar- (0 1)

y buscamos todos los vectores v = (x,y)7 tales que

2= (o) ()= ()= 6)

De la igualdad (y, O)T = (0,0)T se obtiene la tinica ecuacién

y=20
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Asi, x es libre y los autovectores asociados a A = 2 son

v:<§>, x40

Por ejemplo, para x = 1 podemos tomar como autovector base

- ()

Y por lo tanto tenemos multiplicidad geométrica igual a 1, porque solamente hay un vector linealmente

independiente.
20
0 2

2-x 0 |_ )
’0 2)\'_(2_)‘)

Otro ejemplo numérico

Q
I

Polinomio caracteristico
Xc(A) =det(C — \I) =
Entonces,

A=2 con multyg(2) =2

Autovectores para A =2

C-2I= (8 8) = (C —2I)v =0 para todo v € R?
Por lo tanto, todos los vectores no nulos son autovectores y el espacio propio tiene dimensién 2:

multgeom (2) = 2

Conclusién: En este caso,
multy)e(2) = multgeom (2) = 2

Un conjunto base de autovectores puede ser:

=) =)
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16 Formas cuadraticas

Definicién
Una forma cuadratica en las variables x1, ..., x, es un polinomio homogéneo de grado dos:
_ 2 2 29
q(r1,. .., Tn) = a1127 + 2225 + - + Appx; + (a12$1172 +a13T123 + - + an—l,nIn—lfﬂn)

También se puede expresar de forma compacta mediante sumatorias:

n
2
q(x1,... ) = E a;z; + 2 E @i T
i=1

1<i<j<n

Representaciéon matricial

Escribiendo
T

r=1: y @= (aij)i,jzl
T,

con @) simétrica (es decir, a;; = aj;), la forma cuadrética se expresa de modo compacto como
g(z) =27 Qz
En esta matriz, cada entrada q;; = a;; multiplica 27 y cada par de entradas Qij = Qji = a;; multiplica 2 z;x;.
Ejemplo para 3 variables
Consideremos la forma cuadratica en (z1, 22, z3):
q(x1, 20, 13) = 322 + 423 + 53:% + 2x129 + 42123 + 61013

La matriz asociada es

31 2
=11 4 3],
2 3 5
con lo que
3 1 2 T
q(x) = T Qu = (:1:1 o 1;) 1 4 3 T
2 3 5 T3

Clasificaciéon de formas cuadraticas segin autovalores
Sea una forma cuadratica ¢(x) = 27 Qz con matriz simétrica @ y autovalores A1, ..., \,.

¢ Definida positiva: ¢(z) > 0 para todo = # 0. Se cumple si y solosi A\; >0 Vi.
¢ Semidefinida positiva: g(x) > 0 para todo z. Se cumple si y solo si A; >0 Vi.

e Definida negativa: ¢(z) < 0 para todo x # 0. Se cumple si y solo si A; <0 V.

Semidefinida negativa: ¢(z) < 0 para todo . Se cumple si y solosi \; <0 Vi.

Indefinida: ¢(x) toma valores positivos y negativos. Ocurre cuando 34,5 : A; >0, A; <O0.
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Ejemplo practico

Estudiar el signo de
o(z1, z2,23) :x% — 2x129 + 3:6% + x%

sujeta a
T +x3 — 23 = 0,
—T1tx3 = 0.

1. Parametrizacion de las restricciones.
De —x1 + 3 = 0 obtenemos z3 = x1. Sustituyendo en x1 + x5 — x3 = 0 queda

1 +T9—21 =0 = x9=0.

Luego todo vector (z1,z2,23) que cumple las restricciones es

1
(x1,29,23) = (21,0,21) =y [0 ],
1

con y =1x1 € R.

2. Forma restringida.
Sustituyendo (x1,0,z1) en ¢:
ey, 0,y) =y* =0+ 0+y* = 24",

Es decir, la forma sobre la variable libre y queda
Uly) =24

3. Conclusioén.
Como 2y? > 0 para todo y # 0, la forma cuadrética ¢ es positiva definida en el subespacio definido por las
dos restricciones.

Método matricial (sin sustitucién directa)

Queremos estudiar
p(z) =" Az,

sujeta a las restricciones lineales C'z = 0.

1. Matriz A y restricciéon C. De
(w1, T2, x3) = 25 — 2w109 + 323 + 22

leemos

y las ecuaciones

1+ 22 —23 =0, o= 1 1 -1
—z14+23=0 -1 0 1)
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2. Base del espacio restringido (célculo de ker C'). Partimos de

1 1 -1 1
C == ) T = ) )
-1 0 1 T3

y resolvemos la ecuacién lineal

T+ 12 — 23 =0,
Cr=0 <
—T1tx3 = 0.
De la segunda ecuacién se obtiene
xr3 = T1.

Sustituyendo en la primera:
T+ 2o —21 =0 = 29 =0.

Asi, todo vector = en ker C tiene la forma

X1 1
z=10] =210
X 1

Por tanto una base de ker C estd dada por la columna
1
B=10],
1
y cualquier x que satisfaga las restricciones se puede escribir x = By, donde y € R es la variable libre.

3. Forma cuadratica restringida. La matriz de la forma en la variable libre y es

1 -1 0\ /1
M=B"AB=(1 0 1)|-1 3 0||0]=2
1) \1

Por tanto la forma restringida es
Uy) =y " My =2y°.

4. Conclusién. Como M = 2 > 0, la forma ¢ es positiva definida sobre el subespacio dado por las
restricciones.
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17 Menores

Definiciones de Menores

n . . s . o . . .
€ K™*" una matriz simétrica (aunque las definiciones de menores se aplican a cualquier

Sea A = (aij)i,jzl
matriz cuadrada, el contexto de formas cuadréticas usualmente implica simetria).

Menor (general) de orden k. Un menor (general) de orden k de A es el determinante de una submatriz
k x k de A. Esta submatriz se forma seleccionando un conjunto I = {iy,...,ix} de k indices de filas (con

i1 < iy < -+ < i) y un conjunto J = {ji,...,jx} de k indices de columnas (con j; < jo < -+ < jg). Si
k

Al[l, J] denota la submatriz formada por las filas en I y las columnas en J, es decir, A[I, J] = (aiqu)p g=10

entonces el menor es det(A[I, J]).

Menor principal de orden k. Un menor principal de orden k es un menor de orden k donde el conjunto
de indices de las filas seleccionadas es el mismo que el conjunto de indices de las columnas seleccionadas.
Es decir, si I = {i1,...,i} C {1,2,...,n} con i; < ig < --- < ig, el menor principal asociado a I (a veces
denotado Mj o Aj) es:

Ar =det(A[I,I]),
donde A[I, I] = (aipiq)k

=1 Estos son los determinantes de las submatrices principales de A.

Menor principal inicial (o dominante) de orden k. Un menor principal inicial o menor principal lider
de orden k (usualmente denotado Ay) es el menor principal obtenido al seleccionar las primeras k filas y las

primeras k columnas de A. Es decir, corresponde a tomar I = {1,2,...,k}:
a1 aiz - A1k
a1 G2 - G2k
Ak = det
g1 Qk2 - Okk

En resumen, para una matriz A

e Menor (general) de orden k: Determinante de cualquier submatriz k x k (los indices de las k filas
elegidas pueden ser distintos de los indices de las k columnas elegidas).

e Menor principal de orden k (Aj): Determinante de una submatriz k& x k formada tomando el mismo
conjunto de k indices para las filas y para las columnas.

e Menor principal lider (o de orden inicial) de orden k (Ay): Determinante de la submatriz k x k superior
izquierda de A. Es un caso particular de menor principal.

Ejemplo: menores de una matriz 3 x 3

Sea,
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1. Menores de orden 1 (todos los elementos de A):

M1 =2, Mpg=-1, M3=0,
My = —1, My =3, Msy=1,
M3z =0, Mzp=1, DMz3z3=2.

2. Menores principales de orden 1:
My =2, My =3, M;=2.

3. Menores de orden 2 (todas las submatrices 2 x 2):

{1,2} {1,3} (2,3}
I Ry e

0
1
2 -1 2 0 -1 0
{1,3} | det <O 1 > =2 det (0 2) =4  det ( 1 2) =-2
-1 3 -1 1 3 1
{2,3} | det < 0 1) =—1 det < 0 2) =—-2 det (1 2)

4. Menores principales de orden 2: Sdlo los subindices coinciden:

det A[{1,2},{1,2}] =5, detA[{1,3},{1,3}] =4, detA[{2,3},{2,3}]=5.

5. Menores principales lideres (o menores principales de orden inicial)

Al = det([Q]) = 2’ AQ — det( 21 3l> — 5, A3 =det A =8.

Otro ejemplo

Para
2 -1 0
A=1-1 3 1
0 1 4
los menores principales lideres son
2 -1
m=0 . a=1(C F) . A=

Clasificacion de formas cuadraticas mediante menores

Sea la forma cuadratica

Qz)=2TAx

con A simétrica.
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Menores principales iniciales
Denotamos por A el menor principal inicial de orden k&, es decir
Ay =det(A[{1,...,k}{1,....k}]),

y por A el menor principal cualquiera, correspondiente al subconjunto de fndices I C {1,...,n}.?

Criterio de Sylvester (definitud estricta)

e ( es definida positiva si y solo si

A >0 paratodok=1,...,n.

e () es definida negativa si'y solo si

(-1)*Ap >0 paratodok=1,...,n.

Criterio para semidefinitud
e () es semidefinida positiva si 'y solo si todos los menores principales Ay > 0 para todo I C {1,...,n}.
e Q es semidefinida negativa si y solo si (—1)I A; > 0 para todo I € {1,...,n}.

Criterio para formas cuadraticas indefinidas

Si existen indices I,J C {1,...,n} tales que los menores principales satisfacen A; > 0y A; < 0, entonces @
es indefinida

Observaciones

e Las condiciones del criterio de Sylvester son necesarias y suficientes para la definitud de @, pero para
la semidefinitud son solo necesarias.

e Una matriz que es definida positiva es semidefinida positiva y si es negativa también es semidefinida
negativa.

Algunos casos posibles con una matriz simétrica 4x4

Sea | A;| el menor principal lider de orden i.?

(a) Si|A1] >0, |As] >0, |A3] > 0y |A4] > 0, entonces A es definida positiva.

(b) Si|A1| <0, |As] >0, |A3] <0y |A4] > 0, entonces A es definida negativa.

(c) Si|A1] >0, |As] >0, |A3] =0y |A4| <O, entonces A es indefinida debido al cuarto menor principal.
(d) Si|A1| <0, |A2] <0, |A3] <0y |A4| < 0, entonces A es indefinida debido al segundo y cuarto menor
principal.

2Para un subconjunto I C {1,...,n}, definimos A; := det(A[l,I]) como el menor principal asociado a I. Por ejemplo,
Agq,3) = det (le 313). Cuando I = {1,...,k} escribimos simplemente Ay, el menor principal lider de orden k.
’ 31 33
3En esta seccién, A; denota la submatriz principal lider de orden %, obtenida tomando las primeras i filas y columnas de A.
En consecuencia, |A;| = det(A[{1,...,i},{1,...,i}]), que también denotamos por A;.
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(e) Si|A1] =0, |A42] <0, |As] >0y |A4] =0, entonces A es indefinida debido al segundo menor principal.

(f) Si|A1] > 0, |A3] =0, |A3] > 0y |A4] > 0, entonces A no es definida. No es semidefinida negativa,
pero puede ser semidefinida positiva. Para comprobar la semidefinitud positiva, es necesario verificar
los 15 menores principales de A, no sélo los cuatro primeros. Si ninguno es negativo, A es semidefinida
positiva; si al menos uno es negativo, A es indefinida.

(g) Si|A1l =0, |Aa] > 0, |A3| = 0y |A4] > 0, entonces A no es definida, pero puede ser semidefinida
positiva o semidefinida negativa. Para decidirlo, es necesario comprobar nuevamente los 15 menores
principales de A.

Ejemplo
Sea
-4 1 0
EF=11 -3 1
0 1 -2

Menor principal lider de orden 1
Ay = det(E[{1}, {1}]) = det([-4]) = —4

Menor principal lider de orden 2

A2=det<_14 _13>=(—4)(—3)—1-1=12—1:11

Menor principal lider de orden 3

-3 1 1 1 1 -3
Az = det(F) = —4det ( 1 2) — 1det (O 2) + 0det (0 1 )

=—4((-3)(-2)—1-1) = 1(1-(=2) = 1-0)
= —4(6—-1)—1(-2)= —20+2=—18
Verificacién del criterio de Sylvester
(-1D)'A;=—(-4)=4>0
(-1)? Ay =11>0
(-1)> A3 =—(-18) =18>0

Por tanto E es definida negativa

Otro ejemplo

Sea

Q

Il
O = =
O~ =
o O O

Menores principales de orden 1

det(C[{1},{1}]) =1 det(C[{2},{2}]) =1 det(C[{3},{3}]) =0
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Menores principales de orden 2

det (C[{1,2}, {1,2}]) = det G 1) —0
1 0

det(C[{1,3},{1,3}]) = det 0 0)=0

det (C[{2, 3}, {2.3}]) = det (é 8) —0

Menor principal de orden 3
det(C) =0

Como todos los menores principales son > 0, C es semidefinida positiva segiin el criterio
completo de semidefinitud positiva
Otro ejemplo

Sea

I
SRR
S =N
oo o

Menores principales de orden 1

det(D[{1}, {1}]) = 4
det(D[{2}, {2}]) = 1
det(D[{3},{3}]) =0

Menores principales de orden 2

det(D[{1,2}, {1,2}]) = det (;‘ f) —41-2.2-0
det (D[{1,3}, {1,3}]) = det (é 8) —4.0-0-0=0

det(D[{2,3}, {2,3}]) = det (é 8) —1.0-0-0=0

Menores principales de orden 3
det(D) =0

Como todos los menores principales son > 0 la matriz es semidefinida positiva.

Otro ejemplo

Sea
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Menores principales de orden 1

det (FI{1}, {1}]) =
det (F[{2}., {2)])
det (FI{3}. {3}]) =

Menores principales de orden 2

det(F[{1,2},{1,2}]) = det (‘01 _02> =(-1)-(-2)-0:-0=2

det(F[{1,3},{1,3}]) = <
det(F[{2,3}, {2,3}]) = det (‘2

Menor principal de orden 3
det(F) =0

Verificacion del criterio de semidefinitud negativa

—1)2A{23} 0>0
(-1)*A3: (-1)-0=02>0

Por tanto F' es semidefinida negativa.
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18 Concavidad y convexidad

Definicién de convexidad y concavidad para funciones de una vari-
able

Sea f: I CR — R, donde I es un intervalo convexo. Decimos que:
e f es conveza si para todo x1,z9 € I y todo t € [0, 1] se cumple
F(A =tz +tas) < (1—1)f(x1) +1 f(x2)
Intuiciéon geométrica: El término
(L=t)f(z1) +t f(a2)

coincide con el valor que adopta la recta secante en la posicién intermedia (1 — t)xy + t z5. Por tanto,

la desigualdad
F(A =tz +tag) < (1—t)f(ar) + ¢ f(x2)

expresa que, en cada punto entre x1 y o, la curva de f permanece siempre por debajo de esa secante
e f es concava si para todo x1,29 € I y todo t € [0, 1] se cumple
f(A=t)z +tag) > (1—1t)f(x1) +t flx2)

Intuiciéon geométrica: Aqui la desigualdad se invierte: el grafico de f “queda por encima” de la recta
secante entre los puntos dados

Ejemplo Convexo: f(z) = 22

11Y

recta decante

(21, f(21)) 05 | (z2, f(x2))

Ejemplo Céncavo: f(z) = —2?
(.’1:1 ;:1:2 , f( Ty ;,’112 ))
Yy
‘ 1 i |
-1 0.5 1
(1, f (1)) —05 (2. f(22))
recta decante
14
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De hecho los dos casos anteriores corresponden a convexidad estricta ya que la recta secante pasa

por arriba o por debajo de cualquier punto. También puede suceder que la recta secante esté justo por arriba
de la funcién. Lo que implicaria convexidad no estricta:

1y

< |
ot
—_

<
o
—_

-1+

Relacionando la concavidad y convexidad con conjuntos convexos
o Converidad: la region
{(@9) |y > fl2)}

es un conjunto convexo. Esto significa que si tomas dos puntos (x1,41) y (22, y2) por encima del grafico
de f, el segmento que los une permanece siempre por encima de la curva

o Concavidad: la regién
{(z.9) |y < fl=)}

es un conjunto convexo. Fn este caso, cualquier segmento trazado entre dos puntos por debajo del
grafico de f queda enteramente dentro de esa region

Ejemplo Convexo: f(x) = z?

1 1Y

—_Y

-1 —0.5 0.5


https://cabraljuan.github.io

Juan Andrés Cabral

2

Ejemplo Céncavo: f(x) = —x

Concavidad y convexidad en R?
Definicién:
e f es conveza si para todo (z1,y1), (x2,y2) y todo t € [0, 1] se cumple

F(A=8)(z1, 1) + t(x2,92)) < (1 —1t) f@r,y1) +t 22, 92)

e f es concava si —f es convexa, es decir la desigualdad se invierte
Intuicién geométrica: La intuiciéon se mantiene, el conjunto que estd por debajo de la grafica de una
funcién concava es un conjunto convexo y el conjunto que estd por arriba de una funciéon convexa es un
conjunto convexo

Regla en base a derivadas segundas

Recordatorio: criterio para funciones de una variable
Sea g: I C R — R de clase C? en un intervalo I. Entonces

g'(t) >0 Vtel = gesconvexaen [

g'(t) <0 Vtel = gesconcavaen I
Sea f: R? = R de clase C?.

Tomemos dos puntos (x1,41) v (22, y2) en R? y sea
g(t) = f((L—t)zy +tao, (1—t)y1 +ty2) t€[0,1]
Intuicién sobre g. Para entender qué hace g, primero observemos que
(@(t),y(t) = (1 =t)ars +tws, (1—t)y1+1tys)
es la parametrizacién del segmento rectilineo que une los puntos (z1,y1) y (z2,y2) en el plano Por tanto,
9(t) = f(a(t),y(t))

No es mas que el valor de f al desplazarnos a lo largo de ese segmento
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e Cuando t = 0 estamos en (x1,%1)
e Cuando ¢t = 1 estamos en (z2,ys2)
e Parat € (0, 1) recorremos los puntos intermedios

Por la regla de la cadena aplicada a dos variables:

90 = £ (o0, 0(0) (= 1) + 1) + (a0, (0)

= Flal0)y(0)) (22 = 22) + fy a0, (1) (2 1)
0"(1) = L0, y0)] (22— 20) + - [£,(a(0)9(0)] (82— )

= [foa(z(t),y(t) 2" (t) + fay (z(t),y(1) y' (V)] (22 — 21)
+ [fye(@(t), y() () + fyy (2(8), y(£) ¥ (1)] (2 — v1)
Sabiendo que @'(t) = 22 — 1 y ¥/ (t) = y2 — y1:
9"(t) = foa(x(t),y(t)) (w2 — 21) (22 — 1) + fay (2(1), y(t)) (2 — 11) (22 — 71)
+ fya(2(t), (1) (22 — 21) (y2 — y1) + fyy (2(1), y (1)) (Y2 — v1) (Y2 — y1)

Usando fyy = fyz, se agrupan los términos mixtos:

9" (t) = faa(@(t),y(t)) (w2 = 21)% + 2 faoy (2(8), y (1)) (22 — 1) (g2 — 1) + Fyy (1), (1)) (2 — 91)°

Redefiniendo para mayor claridad:

((1 —t)y1 + tys)

&.‘Q‘

w =Ty — 1 Z2=Y2 -

9" (8) = fua (2(t), y(8)) w? + 2 fuy ((£), y(8)) w2 + fy (2(1),y(1)) 2°

— (w Z) (f:zrw(!l?(t)vy(ﬂ) f;z;y(m(f),]j(f,))> <U)>
fay (.’If(t)a?/(t)) fuy (m(t),y(t)) P

Ahora, si la matriz Hessiana H(x,y) = [fij (z, y)] es semidefinida positiva en todo punto, entonces para
cada t € [0,1]
g"(t) = 0

Lo cual implica que g es convexa
Definamos la recta secante entre (0, ¢(0)) y (1, g(1)):

L(t) = g(0) + t(g(1) — g(0)) = (1—1)g(0) + tg(1)

Si la Hessiana Hy(z,y) es semidefinida positiva, entonces ¢”(t) > 0 en [0,1], lo que por teoria de
funciones de una variable implica

g(t) < L(t) = (1—1)g(0) +1tg(1)
Finalmente, usando ¢(0) = f(z1,y1) y g(1) = f(x2,y2), concluimos
S =t)(@1,m0) +t(2,52)) = g(t) < (1—t) flzr,y1) + (22, 2)

que es precisamente la condicién de convexidad de f en R?
De forma andloga, si Hy es semidefinida negativa, entonces

g't) <0 = g(t)>(1—1t)g(0)+tg(1)

y por tanto f es concava
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Extension a R"

El mismo argumento—considerar la funcién unidimensional g¢(t) = f((l -tz + ty)—se aplica en R". Si
la matriz de derivadas segundas (matriz hessiana) es semidefinida positiva para todo z, entonces en cada
direccién y — z la derivada segunda ¢”(t) > 0, lo que implica la convexidad de g y, por tanto, la convexidad
de f. Analogamente, semidefinida negativa da concavidad de f en R"

Ademés, si la Hessiana Hy(x) es definida positiva en todo punto, entonces f es estrictamente conveza; y si
Hy(z) es definida negativa en todo punto, entonces f es estrictamente concava

En resumen

Hessiana Hy(z) Condicién (Vx € D convexo, Vh € R") | Funcién [

W

Semidefinida positiva | AT Hp(x)h > 0 Convexa
>
<

Definida positiva hTH (@) h

(x) 0 paratodo h #0 Estr. convexa
Semidefinida negativa | hT Hy(x)
(z)

0 Céncava

h
Definida negativa hTH f(@)h < 0 paratodo h #0 Estr. céncava

(Aqui D denota el dominio de f.)

Ejemplo

Consideremos la funcién
fley) = 2° + 22y + 39> (x,9) €R?

Caélculo del Hessiano
Las segundas derivadas parciales son

fxx:27 fxy:27 fyy:6

2 2
Hf(fmy):<2 6)

Comprobacién de definitud (criterio de Sylvester).
Calculamos los menores principales iniciales:

Por tanto la matriz Hessiana es

Ay =fre=2>0 Ag=detH;=(2)(6)—(2)>=12-4=8>0

Como Ay >0y Ay >0, Hy es definida positiva en todo R?

Conclusién:
Al ser su Hessiana definida positiva para todo (z,y), la funcién f es estrictamente convera en R?

Otro ejemplo

Consideremos

Calculo del Hessiano

Por tanto la matriz Hessiana es
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Comprobacién de semidefinicion.
Los menores principales iniciales son

Alzfza::_2<0 AQ:detHf:(_2)0_02:O

Como A; < 0y Ay = 0, debemos analizar un menor principal mas: Af’Q = 0 <0, entonces Hy es semidefinida
negativa (pero no definida negativa)

Conclusién.
Al ser su Hessiana semidefinida negativa en todo R2, f es céncava. Ademds, f no es convexa,
ni estrictamente céncava, ni estrictamente convexa

Cuasiconcavidad y cuasiconvexidad

Primero, observemos que:
e Toda funcién cdncava es cuasicéncava
e Toda funcién convera es cuasiconvexa
Caracterizacion de cuasiconvexidad y cuasiconcavidad
e [ es cuasiconveza siy solo si todos sus subniveles L, (f) son conjuntos convexos
e [ es cuasicdncava si'y solo si todos sus superniveles U%(f) son conjuntos convexos

Interpretacién en curvas de nivel
Recordemos que las curvas de nivel de f para un valor « son los conjuntos

{z eR": f(z) = a}
Los conjuntos de nivel (subniveles y superniveles) son las regiones delimitadas por esas curvas:

Lo(f) ={z €eR": f(z) < a}
U(f)={xzeR": f(z) > a}

Versién estricta (interpretacién geométrica pura)

- f es estrictamente cuasiconvexa si, para todo «, cada subnivel L, (f) es un conjunto estrictamente
convero. Es decir: no sélo L,(f) es convexo, sino que ademds sus fronteras no contienen tramos lineales.
- [ es estrictamente cuasicéncava si, para todo «, cada supernivel U*(f) es un conjunto estrictamente
convexo.

Ejemplos graficos

Para los siguientes ejemplos vamos a tomar funciones y graficar sus curvas de nivel para analizar el conjunto
que estd por arriba o por debajo de esas curvas:
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Estrictamente cuasicéncava: u(z,y) = /zy, x >0, y > 0

Il Il Il Il Il m |
0.5 1 1.5 2 2.5 3

Estrictamente cuasiconvexa: v(z,y) = 2% + y?

Cuasicéncava (no estricta): u(z,y) = min{z,y}

Sy

05 1 15 2 25 3
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Cuasiconvexa (no estricta): f(x,y) = max{x,y}

31y
2,,
1 f=1
f<1
i i i x\

Cuasiconvexa y cuasicéncava: g(z,y) =x +y

Y

cuasiconcava,

cuasiconvexa

015 1 115 2 215

Casos univariables

Para los casos de funciones de una sola variable el anélisis grafico es andlogo, solamente que ahora los conjuntos
de supernivel y subnivel son lineas rectas, que son convexas cuando no estdn cortadas y son convexos cuando
se cortan.

Cuasicéncava,

supernivel

0.5 1 1.5 2
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Cuasiconvexa
2 .
g(z)
1.5
g(x)
1

subnivel

0.5 1 1.5 2
No cuasiconvexa

2 .

1.5

Existe un teorema asociado a la cuasiconcavidad y cuasiconvexidad de funciones de una variable. Si
una funcion es creciente o decreciente, entonces es simultdneamente cuasiconvexa y cuasicéncava.
Teorema (monotonicidad y cuasiconvexidad/cuasiconcavidad en una variable). Sea f : R — R
una funcién diferenciable en un intervalo I C R.
Si
f'(x) >0 paratodox el

o bien
f'(z) <0 paratodoxz €l

entonces f es simultdneamente
e cuasiconvexa en I, y

e cuasicéncava en I.

Criterio de hessiano orlado para cuasiconvexidad y cuasiconcavidad

Las siguientes condiciones son vélidas cuando evaluamos las funciones en ntmeros positivos (es decir en el
ortante no negativo):

Sea f: U C R® — R de clase C? en un dominio convexo U, y supongamos V f(z) # 0 para todo x € U.
Definimos la matriz hessiano orlado en x como

B(I)< 0 Vf(w)T>
Vf(x) Hy(z)
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donde Hy(z) es la Hessiana usual de f
Entonces se tiene la caracterizacion siguiente:
Condiciones necesarias:

e f es cuasiconvexa en U solo si los menores principales lideres (sin contar el 0) son todos menores o
iguales a 0

e [ es cuasicéncava en U solo si los menores principales lideres (sin contar el 0) alternan de signo (o son
iguales a 0) empezando por el negativo

Condiciones suficientes y que ademads aseguran cuasiconcavidad y cuasiconvexidad estricta:
e [ es cuasiconvexa en U si los menores principales de lideres (sin contar el 0) son todos menores a 0

e f es cuasiconcava en U si los menores principales de lideres (sin contar el 0) alternan de signo empezando
por el negativo

Para que z = f(z1,...,2,) sea cuasicéncava en el n-ortante no negativo, es necesario que

<0 n impar
|B1| <0, |Ba|>0, ..., |By|
>0 n par

Una condicién suficiente para que f sea cuasiconcava en el n-ortante no negativo es que
<0 n impar

|Bll <0, ‘BQ| >0, ..., |Bn‘
>0 n par

Ejemplo

Sea
fi A= R, A={(z,y) eER*:2 >0,y >0}, flz,y)==2y

Derivadas parciales y Hessiano

0 1
fx:ya fy:xa Hf(l',y):
1 0
Hessiano orlado
Definimos las siguientes matrices:
0 T
0 y Y
Bl = BQ = Yy 0 1
y 0
z 1 0

Célculo de determinantes

det By = —y? <0 det Bo=2xzy > 0

Conclusiéon
Para cuasiconcavidad en el dominio convexo A se exige

D1 <0, Dy>0
Como z,y > 0 garantizan D; < 0y Dy > 0, concluimos que

f(z,y) = xy es cuasicéncava en A
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Relacién y diferencias entre cuasiconcavidad y concavidad (o cua-
siconvexidad y convexidad)

e Relacion entre ambas:

— Toda funcién céncava es cuasiconcava
— La reciproca no es cierta: hay funciones cuasicéncavas que no son céncavas
— Toda funcién conveza es cuasiconvexa
— La reciproca no es cierta: hay funciones cuasiconvexas que no son convexas
— Toda funcién estrictamente céncava es estrictamente cuasiconcava
— Toda funcién estrictamente convezra es estrictamente cuasiconvera
e Operaciones y composicion:
— Suma y combinacién lineal (con coeficientes no negativos) de céncavas/convexas produce una
funcién céncava/convexa
— La suma de funciones cuasicéncavas/cuasiconvexas no siempre es cuasicéncava/cuasiconvexa
— La cuasiconcavidad/cuasiconvexidad se conserva bajo composicién con funciones estrictamente
crecientes
— Ademass, sea
h(z) = (g o f)(x)
con
fTMCR"R, ¢g:ICR—=R
donde M es convexo e I es un intervalo. Entonces:
1. Si f es convexa y g es creciente y convexa, entonces h es convexa
2. Si f es concava y g es creciente y cdncava, entonces h es concava

Ejemplo
Anteriormente probamos que f(z,y) = xy es cuasicéncava. Veamos una transformacién de dicha funcién:
sea
g9(z,y) =In(zy) = Inz +1Iny
1 1 1
gx:;a gyZZa gxx:_?a gxy:()7 gyy:_?
0 ga o i
Bl(‘r7y): < > = (1 $1
9z Gz T Tz
1
Di(z,y) =det B; = 2 <0
1
0 9: gy 0 2 Y
BZ (CB, y) = |9z YGzz YGzy - % 7% 0
1 1
9y YGzy YGyy y 0 Tz
2
Dg(x,y) = deth = J,‘Ty2 >0
Conclusion

D1<0, Dy >0

Por tanto g(x,y) = In(zy) es cuasicéncava en A
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19 Optimizacion sin restricciones

Optimizacién sin restricciones: calculo univariable

Sea f: I C R — R una funcién de clase C2. Para encontrar extremos locales de f aplicamos el siguiente
procedimiento:

1. Condicién de primer orden: Calcular la derivada primera y resolver
fl@")=0
Los puntos z* que satisfacen esta ecuacién son los puntos criticos.

2. Condicién de segundo orden: Evaluar la derivada segunda en cada z*:

>0 = 2* es un minimo local
" so.
ff(x*){ <0 = z* es un maximo local

=0 = criterio inconcluso (punto de inflexién posible)

Ejemplo rdpido: Para f(z) = z3 — 3a:
fl(x) =32 =3, fl(x) =0 =2 =+1; [f’(x)=6z.

f"(1)=6 >0 = z =1 minimo local, f"(-1)= -6 <0 = 2= —1 mdximo local.

Pasando a n variables

Denotemos

y sea
= (@, a7

un punto critico en R™.

F:ACR®" - R

la condicion de primer orden generaliza a

VF(z*) =0

es decir, todas las derivadas parciales en z* deben anularse.

La condicién de sequndo orden se extrae de la matriz Hessiana H = V2F(x), que retine todas las
derivadas segundas de F'. De la misma manera que f”'(z*) en una variable nos indica concavidad o convexidad,
la semidefinicién positiva o negativa de H nos permitird determinar si F' tiene un minimo o maximo local en

T*.
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Condiciones suficientes y criterio de la matriz Hessiana

Sea
F:-UCR" — R

de clase C? y sea z* € U un punto critico, es decir,
VF(z*)=0.
e Optimo local (criterio de la Hessiana).
— Si H(z*) es definida negativa, entonces x* es mdzimo local.

— Si H(z*) es definida positiva, entonces x* es minimo local.

— Si H(z*) es indefinida, entonces x* no es ni minimo ni maximo local (punto silla).

¢ Optimo global (funciones convexas o céncavas).

2k

— Si Fes convexa en U y VF(z*) = 0, entonces z* es minimo global.

— Si F es céncava en U y VF(z*) = 0, entonces z* es mdzimo global.

Criterio de los menores principales para optimo local.

Sea,
F:UCR" — R

de clase C? y supongamos que z* € U es un punto critico:
VF(z*)=0
Denotemos Ag por el menor principal inicial de orden k de la matriz Hessiana evaluada en el punto critico.

Condicién para maximo local. Si los menores principales alternan de signo comenzando negativo:
A1<0, Ay >0, A3<0, ey (—1)”An>0

entonces z* es un mdximo local de F.

Condicién para minimo local . Si todos los menores principales son positivos:
Ay >0, Ay>0, A3>0,...,A,>0

entonces x* es un minimo local de F.

Criterio de los menores principales para optimo global

Minimo global. Para que F tenga un minimo global en U, es suficiente que la matriz Hessiana H sea
semidefinida positiva en todos los puntos x € U. En términos de menores principales, esto equivale a
que para cualquier submatriz principal (es decir, para cualquier seleccién de filas y columnas
con los mismos indices) el determinante sea mayor o igual a cero. Cuando esto se cumple, F' es
convexa y cualquier punto critico es automaticamente un minimo global.

Maéximo global. Andlogamente, F' tiene un mdximo global en U si la Hessiana H es semidefinida negativa
en todo U. En lenguaje de menores principales, esto significa que para cada submatriz principal
de orden k, el determinante de dicha submatriz multiplicado por (—1)* es mayor o igual a cero.
Bajo esta condicion, F' es concava y cada punto critico serd un méaximo global.
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Diferencia entre 6ptimos locales y globales

La principal diferencia entre 6ptimos que son locales y éptimos globales es que al momento de realizar el
célculo de segundas derivadas (con la matriz hessiana), para asegurar un éptimo local tenemos que evaluar
el hessiano en un punto particular, de tal forma de mostrar la funcién tiene un comportamiento similar al
de una funcién estrictamente convexa/céncava en la vecindad inmediata de x*. Por otro lado, para poder
confirmar que un éptimo es global es necesario analizar la forma de la funcién, analizando el hessiano sin
evaluar en ningiin punto particular y ver si la funcién es convexa o céncava.

Ejemplo: F(z,y) = 2° — y* + 9y

1. Derivadas parciales y puntos criticos

Definimos
F(z,y) =2" -y’ +9zy

Calculamos las derivadas parciales:

oF OF
F,=—=32"+9 Fy=—=-3y>+9
or T T Y oy vt
Para hallar los puntos criticos resolvemos
322 +9y =0
—3y2+ 92 =0
De la primera ecuacion:
22
V=3

Sustituyendo en la segunda:

2\ 2 4 4
3(-5) +9r=0—= 35 +%=0 = —F+0=0 — —2'+27r=0 = z (-2’ +27) =0

De aqui obtenemos
32

r=0 = y=0, —x3+27:0:>x3:27:>x:3:>y:—§:—3

Por tanto, los puntos criticos son
0,0) v (3,-3)

2. Hessiano y clasificacion de extremos
5 Fow Fpy 6z 9
VF(z,y) = =
Fy. Fyy 9 —6y

, 09
VIFO,00 =, ], A1=0 A;=-81<0

El Hessiano es

1. En (0,0):

Como As < 0, es un punto silla (saddle point).
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2. En (3,-3):

18 9

VQF(3,3)<9 18), A =18>0, Ay=18-18-9-9=243>0

Aqui la Hessiana es definida positiva, por lo que (3, —3) es un minimo local.

Conclusién:
e (0,0) es un punto silla.
e (3,—3) es un minimo local de F.

e No hay maximos locales.

3. Concavidad/convexidad global de F

Para determinar si los extremos locales son también globales necesitamos ver si F' es convexa o céncava en
todo R2. Calculamos de nuevo el Hessiano general:

5 6x 9
ViF(x,y) =
9 —6y

Los menores principales siguen un patrén ya que por ejemplo 6z, puede ser negativo o positivo. Lo
mismo con —6y y |H|. No podemos afirmar que tenemos un ptimo global.

Ejemplo: f(z,y) = 2* + ¢

1. Derivadas parciales y punto critico

Sea
flzy)=2>+y*  (z,y) € R?

Calculamos las derivadas parciales:

El tnico punto critico se obtiene resolviendo

20=0, 2y=0 = (z,y)=(0,0)

2. Hessiano y clasificacion de extremos locales

5 2 0
\Y f(x’y): <0 2)

Apt=2>0,  AP?=2>0, Ay=detV’f=4>0

El Hessiano es constante:

Sus menores principales son

de modo que la matriz es definida positiva en todo R?. Por el criterio de segundo orden, (0,0)
es un minimo local.
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3. Convexidad global y minimo global

Ya que V2f(z,y) > 0 en todo R?, f es conveza en R%. En toda funcién convexa cualquier minimo
local es también minimo global.

()ptimo local y global tinicos

Teorema: Sea f: D — R con D C R", abierto y convexo, f € C1(D) y sea xo € D un punto critico de f.
Se verifica:

1. Si f es convexa en D entonces f presenta en xg un minimo global.
2. Si f es estrictamente convexa en D entonces f presenta en xg un minimo global tinico.
3. Si f es concava en D entonces f presenta en xg un maximo global.

4. Si f es estrictamente céncava en D entonces f presenta en xg un méaximo global tinico.

Preservaciéon de maximos y minimos locales en dos variables

Sea D C R un conjunto abierto. Sea ¢ : D — R una funcién de clase C? tal que ¢’(t) > 0 para todo t € D.
Sea f : R? — R una funcién de clase C? tal que su imagen est4 contenida en D (es decir, f(z,y) € D para
todo (x,y) en el dominio de f o en la regién de interés). Entonces:

1. (z0,yo) es punto critico de f entonces (xg,yo) es punto critico de ¢ o f.

2. Sila matriz Hessiana D? f (¢, yo) es definida negativa (mdximo local) o definida positiva (minimo local),
la Hessiana de ¢ o f en (zo, yp) mantiene la misma definitud.

Ejemplos de ¢

e o(t) =at+b, cona>0.

o o(t) = el

e ©(t) =log(t + c), con ¢ > 0 (dominio t > —c).
o p(t)=1t3(cont#0).

e o(t) =+t (ent>0).
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20 Aplicaciones econémicas de optimizacién

Teorema de la envolvente (optimizacién sin restricciones)

Consideremos el problema de maximizacion sin restricciones

max U = f(z,y,¢)

z,y

donde x,y son variables endégenas y ¢ es un pardmetro exogeno.

Condiciones de 6ptimo

Las condiciones necesarias de primer orden en el éptimo (z*(¢),y*(¢)) son

%(”3*("5)’ v (@), ¢) =0, %(w*(qb), y*(¢), ¢) = 0. (1)

Bajo condiciones de segundo orden adecuadas, estas ecuaciones definen implicitamente z*(¢) y y*(¢).

Funcién de valor indirecta

Sustituyendo en la funcién objetivo obtenemos la funcién de valor méximo (funcién objetivo indirecta)

Esta es una funcién que depende en tiltima instancia de ¢, a diferencia de la funcién objetivo que
depende de x y de y.

Derivada de la funcién de valor

Al diferenciar V' con respecto a ¢ usando la regla de la cadena:

av ox* oy*
L fac =+ fy
do ¢ ¢
donde todos los términos fy, fy, fs se evalian en (z*(¢),y*(¢), ®).
Pero por las condiciones de primer orden (1) se tiene f, = f, = 0 en el éptimo, y por tanto

+ fo

av
do

= fo(2"(9), ¥*(9), 9)

Este es el teorema de la envolvente: la derivada de la funcién de valor maximo con respecto al parametro
¢ equivale al efecto directo de ¢ sobre la funcién objetivo, ignorando los efectos indirectos via z*(¢) y y*(¢).

Interpretacion

e La funcién de valor V(¢) “envuelve” la familia de funciones f(z,y, ) optimizadas en (z*(¢),y*(¢)) al
variar ¢.

e El resultado muestra que, en el éptimo, no hace falta calcular dz*/9¢ ni dy*/Id¢$ para conocer %:
basta con el efecto directo fg.
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Intuicion: ;Por qué “teorema de la envolvente”?
El nombre proviene de la idea geométrica de que la funcién de valor indirecta

V(g) = H;%Xf(x, Y, P)

es la envolvente de la familia de graficas { z = f(x,y,¢) : (z,y) € R?} al variar el pardmetro ¢. A continuacién
presentamos varias perspectivas:

Envolvente de familias de curvas/superficies

Para cada ¢ se tiene un punto en el plano (¢, z):

2= f(z7(0),y7(9). )

Estos puntos conforman una curva al variar ¢. La curva limite que toca tangencialmente a cada una de estas
es la envolvente Graficamente, V() “abraza” o “envuelve” el punto més alto de cada miembro de la familia

Ejemplo de envolvente con f(z;t) =tx? + x + 10
Consideremos la familia de funciones
flz;t) =ta® + 2z +10 reR, t<0
donde z es la variable de decisién y ¢t un pardametro exdgeno. Tomamos ¢ < 0 para garantizar que la
maximizacién en x sea bien comportada (coeficiente de 2% negativo)
Funcién valor
Definimos la funcién de valor

V(t) = max f(z;¢)

Condicién de primer orden
Para cada t < 0, el 6ptimo a*(t) satisface

of PO |
a—x—th—i—l—O = z'(t)=-—

Célculo de la envolvente

Sustituyendo z*(t) en f:

2 11 1
V(t) = f(2*(t);1) :t(—%) + (—%) F10= -5 +10=10— o

Teorema de la envolvente

Directamente,
d | 1
V/(t) = f<10fi> —
®) dt 4 42
Por el teorema de la envolvente, también debe cumplirse

V(1) = %(:1;*(25);75) =2*(t)? = <7$)2 = %fz

confirmando que los efectos indirectos via 2*(t) se anulan en la derivada de la funcién valor
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Interpretacién
e Cada f es una pardbola céncava en x (porque ¢t < 0)
e La envolvente V/(t) = 10 — 4; toca tangencialmente a cada pardbola en z = z*(t)

¢ El teorema de la envolvente nos dice que para medir el impacto de ¢ sobre el méximo, basta con 9 f /0t
evaluada en el éptimo

Para obtener la envolvente como funcién de la variable x, invertimos esta relacién:

S >0
T Ty BT T

Sustituyendo #(z) en f hallamos
V(z) = f(x; t(x)) = (—i) itz +10= —g+x+10= % +10
Por tanto la envolvente viene dada por
y=V(@)=10+3z >0
Graficamente esta funcién toca todos los puntos maximos de la familia de parabolas:

fla,t) =ta? + 2+ 10

y =10+ %1

-1 1 2

Ejemplo econémico: maximizacion de beneficios sin restricciones

Consideremos una empresa que produce una cantidad ¢ > 0 de un bien y enfrenta un precio de mercado
p > 0. Su beneficio 7 viene dado por

m(q;p) = pqg — C(q)

donde C(q) es su funcién de costes, asumida de clase C? y estrictamente convexa (C”(q) > 0)

Problema de optimizacién

Para cada precio p la empresa elige g para
max (g; p)
Las condiciones de primer y segundo orden son:
om

O ) — 1Y —
9 P C'g9g=0 = C'(¢")=p

— =-0C"(¢") <0 = mescéncavaen qy q*(p) es el tinico méximo
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Funcion de beneficio indirecto

Definimos la funcién valor (beneficio méximo) como

Teorema de la envolvente

Al derivar II(p) con respecto a p, aplicando el teorema de la envolvente se obtiene

i _ om
dp  Op

(q*(p);p) =q"(p)

sin necesidad de calcular %:, pues d7/dq = 0 en el éptimo

Funcién concreta

Supongamos C(g) = 3 cq? con ¢ > 0. Entonces
C'@)=cq C"(@)=c>0

y la condicién de primer orden p = cq da

q"(p) = . H(p)=p- 2 - 56(2)2 =5

Verifiquemos la envolvente:

Interpretacion

e La condicién de envolvente d7/9q = 0 nos da la oferta éptima ¢*(p)

e El teorema de la envolvente permite calcular la sensibilidad del beneficio maximo al precio p simplemente
con Ir/0p = q, sin derivar la curva de oferta ¢*(p). En este caso el resultado nos sugiere que ante un
aumento del precio de venta, el beneficio maximo se incrementa.

Otro ejemplo econémico: minimizacién de costes sujeto a restriccion.

Consideremos una empresa cuya tecnologia de produccion viene dada por la funcién Cobb—Douglas
y=F(L,K)=L"K'" «ac(0,1)

donde L y K son trabajo y capital, y y > 0 es el nivel de output

Problema de minimizacién de costes

Dados los precios de los factores w (salario) y r (renta del capital) y el nivel y, la empresa resuelve

min C=wL + rK sujetoa LOK'™%=y
LK
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Demanda condicionada y coste minimo

Escribimos el Lagrangiano
L=wL+rK+ ,u(y — LaKl_o‘)

Las condiciones de primer orden son

oL
I _ LOL*l 11—« —
L w— o K 0

oL

O e p(1—a)LOK =
3k =" w(l—a) 0

junto con la restriccién L*K!'~% = y. De las dos primeras:

T Lx a T
L_aKa :> — —
11—« K* l—aw

ELl—aKa—l —
«

Sustituyendo en L*K'~% = y y resolviendo se obtienen las demandas condicionadas

« 11—« « -«
o 1—« « 11—«
L (w,ry) =y (& K (w,ry) =y (— l—a
(71/7 7/) Y <U’> < , > (e} (U),T, ?/) Yy <’LU) < r ) ( CY)

El coste minimo resultante es

e" -«
Clw,r,y) =wL*(w,r,y) +r K*(w,r,y) =y <g> (1l(v)

Lema de Shephard

La funcién de coste C(w,r,y) es la envolvente de la familia de funciones wL + rK sujeta a F(L,K) =y
Por el teorema de la envolvente, al derivar C' con respecto a w (tratando y,r constantes) basta con tomar el
efecto directo:

g—g = L*(w,r,vy)
De hecho, si derivamos la expresion encontrada:
[y wfa) (/1 = )] =y (w/a)* (r/(1 - ) = L)
Anélogamente,
adf = K*(w,r,y)
Interpretacion

e C(w,r,y) es la curva de coste de largo plazo: “envuelve” todas las rectas wL + rK tangentes a las
iso-productivas LYK~ =y

e La envolvente simplifica el célculo de las demandas condicionadas: no necesitamos derivar L*(w,r,y)
ni K*(w,r,y) respecto a w o r para obtener dC/dw, 0C/dr

e Este resultado se conoce como el Lema de Shephard. El cual nos dice que una vez que tenemos
la funcién de costo indirecta basta con derivar esta con respecto a los precios de los insumos para
encontrar la demanda de insumos condicionada.
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Otro ejemplo: Monopolista multiproducto con dos bienes

Sea un monopolista que ofrece dos bienes ¢;, g2 > 0 con demanda inversa lineal

P1(q1,2) =a—bgr —cqx p2qi,q2) =d—eqi — fao

y costos lineales
Clon ) =99 +ha

Entonces el beneficio es
m(q1,q2) =p1 1 + 202 — Cla1, @2) = (a — bgr — cq2) 1 + (d — eqr — fq2) a2 — (901 + ha2)

Condiciones de primer orden

Para encontrar el maximo, derivamos la funcién de beneficio respecto a cada cantidad e igualamos a cero.
Es crucial incluir todos los términos cruzados.
La derivada respecto a g es:

on
9q; = (@ 2@ —ca) + (—e@) —g=a—g—2ba — ¢+ =0
1
La derivada respecto a ¢o es:
on
87q2 = (—cq1)+(d—eq1 —2fq2)—h:d—h—(c+6)q1 —2fq2:()

Esto nos da un sistema de dos ecuaciones lineales:

2bq1 +(c+e)p=a—g
(c+e)q+2fqge=d—nh

Resolviendo este sistema (por ejemplo, usando la regla de Cramer o sustitucién) se obtienen las canti-
dades 6ptimas:

2f (a— c

" e)(d—h
i =

o

(&

g) —(c+e)
4bf — (c+e)
= (df ) — (c+e)(a—yg)
’ 4Abf — (c+e)?

c+e)

Condicién de segundo orden (Hessiano)

El Hessiano de 7 respecto a (q1,¢q2) es:

0%m 0%r
9 oq3 0q10¢> —2b —(c+e)
Vor = =
o?r 0?m —(c+e) -2f

0¢20q qu
Para que (g7, ¢3) sea un mdximo local, este Hessiano debe ser definido negativo:
-2b<0 = b>0
y su determinante debe ser positivo:
det(V?7) = (=2b)(—=2f) — (—(c+e))(—(c+e)) =4dbf—(c+e)? >0

Note que este denominador es el mismo que el utilizado para calcular ¢ y ¢5.
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Sensibilidad respecto de b y d

Al aplicar el teorema de la envolvente al beneficio maximo II(b, d), basta con derivar la funcién de beneficio
7 respecto a los pardmetros b y d, y luego evaluar en el punto éptimo (g7, ¢3).

T = Y=

o & ap N
or _ ar _ .
od @ dd @

Interpretacion

e Un aumento de b (la demanda del bien 1 es mds sensible a su propia cantidad) reduce el beneficio

maximo, ya que % =—(¢f)? <0.

e Un aumento de d (mayor disposicién a pagar por el bien 2) incrementa el beneficio méximo, ya

que se asume que la cantidad éptima % = ¢; serd positiva.
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21 Optimizacion con restricciones de igualdad

Optimizacién con restricciones y Lagrangiano

En muchos problemas de optimizacién no basta con minimizar (o maximizar) una funcién objetivo f: R — R
libremente: es preciso hacerlo sujeto a ciertas restricciones que deben cumplirse. En este apartado vamos
a revisar el método de los multiplicadores de Lagrange (o método del Lagrangiano) que es una herramienta
fundamental para abordar problemas con restricciones de igualdad

Formulacién del problema

Consideremos el problema
min f(z)
sujeto a  g;(x) =0, i=1,...,k

donde f: R" — R, g;: R® — R son funciones (C?) y las curvas g;(z) = 0 definen el conjunto factible.

El Lagrangiano

Definimos la funcién Lagrangiana asociada al problema como
k
L(z,\) = f(z) + Z i gi(T)
i=1
El lagrangiano también puede formularse como:

L
L(z,\) = f(z) — Z i gi(x)

Ya que el término A es una variable artificial que puede tener signo negativo o positivo. El resultado es
indiferente de si aparece sumando o restando (de hecho véase que la restriccién g;(x) = 0 puede multiplicarse
ambos lados por —1 y sigue siendo vélida).

Condiciones de primer orden

Un par (z*, \*) que resuelve el problema debe satisfacer las siguientes condiciones, que incluyen
k
VoL(@', X) = V(@) + N Vaia") = 0
i=1

gi(x*)=0, i=1,...,k

Estas condiciones son las mismas para maximizar o minimizar un problema de optimizacion libre. Por
lo que el método del lagrangiano nos proporciona una simplificaciéon del problema a cambio de agregar un
multiplicador lagrangiano por cada restriccion.

Interpretacion geométrica

Geométricamente, en el punto 6ptimo x* el gradiente de la funcién objetivo debe poder expresarse como
combinacion lineal de los gradientes de las restricciones

Vf(z*) € span{Vgi(z*),..., Vgr(z*)}
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Ejemplo: Minimizaciéon con restriccién lineal

Consideremos el problema

: 2 2
mlglean(w,y) =z +y

sujeto a g(x,y)=x+y—1=0
El Lagrangiano asociado es

£(I,y,>\) :12 +y2 7)\(fﬂ+y7 1)
Las condiciones de primer orden son

oL oL oL
— =2z—-X=0 , =2y—A=0 , N

B —(z+y—-1)=0

Es conveniente recordar que la condicién % = 0 no es més que g(x,y) = 0.
De las dos primeras ecuaciones se obtiene

A A
xr= — = —
2 Y73

y sustituyendo en la restriccién x + y = 1 resulta A = 1 Por tanto

=yt =3

Este seria el candidato a éptimo ya que cumple las condiciones necesarias.

Otro ejemplo

Consideremos el problema

;{%gf(x,y) =y

sujeto a  h(z,y) =2 4+9>—1=0
El Lagrangiano es
L(xz,y,\)=zy— )\(aj2 + 92— 1)

Las condiciones de primer orden son

g—izy—Q)\a::O (2)
%Zx—”\yz() (3)
oL
a:—(x2+y271):0 (4)

De (2) y (3) se deduce
y=2xz , z=2\y = (2A\)’=1 = A ==+1

Por la restriccién z2 + y? = 1 tenemos ademaés

1 1
y==xr , T = ﬁ ) y= ﬁ
,ASI’7 los puntOS criticos son

Que serfan candidatos a maximos y minimos.
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Ejemplo econémico: Maximizacién de utilidad con restriccion presupuestaria
Consideremos un consumidor que elige cantidades 1,22 > 0 de dos bienes para maximizar su utilidad
1
u(ry, x2) = 7Ty , a€(0,1)
sujeto a su restricciéon presupuestaria
p1x1+peae =M

donde p1,p2 > 0 son los precios y M > 0 su ingreso
El Lagrangiano es
£(£C1, T2, )\) = 1’?%%70( + )\(M — P11 — pzl’g)

Las condiciones de primer orden son

oL oa— e
a—mlzaxl L= —Ap1 =0
oL o
a—xzz(l—a)xl%a—)\pg:()
%:M*plxlfpm:()
De (5) y (6) obtenemos
1—
@ ﬁ:& > X9 = a&ﬂfl
l—ax P2 o P2

Sustituyendo en (7) y resolviendo, se llega a las demandas 6ptimas

Ty = €Ty =
1 I 2
b1 P2

aM (I1—a)M

Condiciones de segundo orden

Suponemos ademés que f y las g; son de clase C? en un entorno de z*.

Caso concreto: 2 variables independientes y una restriccién

Sea
TR R, g:R*= R, L(z,y,\) = f(z,y) + Ag(z,y).

En un punto estacionario (z*,y*, \*) se cumplen las condiciones de primer orden:

Vf(z*,y*) = X Vg(z*,y"), g(z",y") =0.

Definimos las segundas derivadas de la funcién Lagrangiana L£(z,y, \) = f(z,y) + Ag(x,y) en el punto

critico (z*,y*, \*) como

V%Ly’/\)[,(x*, YN ) = Lye Lyy Lya
Laz Lxry Lax

(z*,y*,A7%)
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Aqui,
Loz = fww+)\*g$:v7 £:m; :fa:u"")\* Gy,
»Cya: = fyz+)\*gyxa »ny :fyy+>\* 9yy>

EzA = Yz, £y)\ = Gy
Lz = Gz ﬁAy = Gy,
Lx=0

Por tanto, al evaluar:

.f(l?(l? + A*QIQT ,f’lz!/ + )\*géﬂy g;l}
H = v?:r,y./\)ﬁ(l’*s YSN) = | fyr NGy Syy T A9y 9y

Gz 9y 0 (x*,y*, %)

La submatriz central de orden 2 X 2 es precisamente las derivadas del lagrangiano con respecto a las variables
z,y, y los elementos g,, g, crean el “borde” que la convierte en el hessiano orlado.

Restriccion lineal

Cuando las restricciones son lineales el hessiano orlado se simplifica aiin més: Supongamos
gz, y) =az+by+c
con a, b, ¢ constantes. Entonces:

e Vy(z,y) = (g2, 9y) = (a,b): las primeras derivadas g, = a, g, = b son constantes.

e Las segundas derivadas se anulan:
0 0 0
e = 7—(9z) =0, vy = 7 (92) =0, = =
Gz = 5 (92) 9=y = 5, (92) I =, (9y)

Por tanto,
foo + XN Guw foy + X G2y  Gu
H = v%m,y,A)E(x*ay*’ N)= | fyz+NGyo  Jyy T A9y gy
9z 9y 0 (2% y* A%)
los términos A g desaparecen, y queda
fa::c fwy 9z
H= v(Zz,y,/\)ﬂ(x*’y*7>\*) =\ Sz Juy 9y

9z 9y 0/ (e yern

Condiciones suficientes para maximo o minimo
Sea en el punto critico (z*,y*, \*) el hessiano orlado
0 9z Gy
E[(LL'*, y*7 >\*) = | 9= f:cx + A*gacw fﬂcy + )‘*ga:y
Gy fyz + )\*gym fyy + )\*gyy (%5 A*)
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Las condiciones suficientes para méaximos y minimos son:

det H(z*,y*,\*) >0 = (2%, y") es un maximo local sujeto a g = 0

det H(z*,y*,\*) <0 == (2%, y*) es un minimo local sujeto a g = 0

Condiciones suficientes: caso general

Sea .

min - f(2),

sujeto a  g;(x) =0, i=1,...,k
0

max  f(z),

sujeto a  g;(x) =0, i=1,...,k
y sea el Lagrangiano
k
Lz, A) = f(z) + ZAigi(z)v A= (AL, AR)
i=1
Denotemos

Vg(x) = (Vgl(m) ng(x)) e R<F

Suponiendo que n > k (mds variables independientes que restricciones). Entonces el hessiano orlado se define

como la matriz (k+n) x (k+n)
_ Ok xk Vy(z)
H(z,\) = roos
V()" Vi L(z,A)

Este hessiano orlado tiene asociado n + k menores principales de orden inicial pero solo basta con analizar
estos n — k ultimos menores principales de orden inicial:

e Minimo local: si los tltimos menores principales de orden inicial (lideres) tienen el signo de (—1).
Entonces z* es minimo local sujeto a g; = 0.

e Miaximo local: Silos signos de los menores principales de orden inicial (lideres) se alternan terminando
en el signo de (—1)™ entonces =* es mdzimo local sujeto a g; = 0.

Veamos ejemplos de esto:

En el caso de dos variables y una restriccién, k£ = 1, n = 2 (analizado antes)
Solo tenemos que analizar 2 — 1 = 1 menor principal de orden inicial:

e Minimo local: si:

|H|
Tiene el signo de (—1)¥ = (—1)! Es decir: B
|H| <0
¢ Maximo local: si: B
|H|

Tiene el signo de (—1)" = (—1)? Es decir:
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En el caso de tres variables y una restriccién, k=1, n =3

El hessiano orlado asociado es el siguiente:

0 9z Gy 9=
— xT fﬁl}+A* xrxr X +A* xr 1'2+>\* xrz
H('r*ay*ﬂZ*?)\*): I f *g fy *gy f *g
9y fyac + A Gyx fyy+)‘ Gyy fyz“‘)\ Gyz

gz fzz + A" 9za fzy + A" 9zy fzz + A" 9zz (z* y*, 2%, A%)

Solo tenemos que analizar 3 — 1 = 2 menores principales de orden inicial. Sean A; y A, los tltimos dos
menores principales de orden inicial:

0 9z Gy
Ay = det 9z fmz +A* Gz fa:y + A" Gy
Gy fyz + A" Gyx fyy + A* Gyy

0 9z Gy gz
A, — det 9z f. Gox  Juy 9zy f g

Gy  Syo + X Gy fyy + A Gyy Sy A gy
9z fzm + A" 9zx fzy +A* 9zy fzz + A* 9z

(@*,y*,2%,2%)
e Minimo local: si:
A, Ay

Tienen el mismo signo que (—1)¥ = (—1)! es decir

Ah AZ <0
e Maximo local: si:
A] ) AZ

Alternan el signo terminando con el signo de (—1)" = (—1) Es decir:

A1 >0

A2<0

En el caso de tres variables y dos restricciones, k =2, n =3

El hessiano orlado asociado en (x*,y*, 2*, AT, A\3) es

O O 91z

0 0 92z g2y 92z

H(x*,y*#*,)\ik,)\;) = | 91z 92z facﬂc +>\T 91z +>\; 92z fxy ‘i’/\ik Gizy +/\; 92zy fxz ‘i’/\iF izz +>\§ 92u2
91y 92y fi/w + )‘T 91yx + )‘3 92y fyy + )‘T 91yy + )‘; 92yy fyz + )\»{ 91yz + )‘3 92y2
91z 92z fzm + )\ik 91zx + A; 92z fzy + )‘T glzy + A; ngy

91y g1z

fzz + )\T 91zz + )\5 922z

Solo tenemos que analizar (3 — 2) = 1 menor principal de orden inicial es decir |H]|.
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e Minimo local: si:

|
Tiene el signo de (—1)* = (—1)? Es decir: )
|H| >0
e Maximo local: si: -
|H|
Tiene el signo de (—1)" = (—1)3 Es decir:
|H| <0

Condiciones para maximos y minimos globales y tinicos

Al igual que en optimizacién no restringida es necesario especificar si la funcién es céncava o convexa para
la existencia de un maximo o minimo global, con la optimizacién restringida ocurre lo mismo. Sea

f:R" — R
la funcién objetivo y sea
C ={zeR":hj(z)=0,j=1,...,p}

el conjunto factible.

Condiciones para maximo global y tnico

Si f es estrictamente cuasiconcava y el conjunto factible C' es convexo, entonces cualquier 6ptimo local del
problema

max f(x

zeC ( )

es también éptimo global y tnico.

Condiciones para minimo global y tinico

Si f es estrictamente cuasiconvexa y el conjunto factible C' es convexo, entonces cualquier 6ptimo local del
problema,

min f(x

zel ( )

es también Sptimo global y tinico.
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22 Aplicaciones econémicas con optimizacion con restricciones de
igualdad

Interpretacién del multiplicador de Lagrange

La interpretacion del multiplicador de lagrange puede verse como el efecto que tiene relajar la restriccion
sobre la funcién objetivo. El significado de “relajar” la restricciéon dependerd de si estamos maximizando o
minimizando. Para entender claramente vamos a ver un ejemplo de maximizacién de utilidad.

Consideremos un consumidor que elige z = (z1,z2) € RY para maximizar su utilidad sujeta a una
restriccién presupuestaria lineal:

m%( u(x1, x2) S.a. p121 + P2z = M,
T

donde p = (p1,p2) > 0 son los precios y M > 0 es el ingreso. Denotemos por
v(M,p) = u(z],z3)
la wtilidad indirecta. Usaremos la convencién de Lagrangiano

£(.’L’,)\;M7p) = ’LL(LL’) + )‘(M_plxl _p2332),

Teorema de la envolvente (versiéon paramétrica)

Las condiciones de primer orden requieren que:

oL

e (x1, 22, A) = Ug, (x1,22) —Ap1 = 0,

oL

87(331’3:2’)‘) = uwz(xlva) - >\p2 = 0,
2

oL

B —(@1,72,\) = M — p1x1 — pxa = 0.

El teorema de la envolvente indica que si buscamos derivar la funcién objetivo en el éptimo respecto a
un parametro, podemos primero obtener la funcién de utilidad indirecta y después derivar o primero derivar
y después reemplazar por los valores de x1, x2 en el éptimo. Es decir, dado que tanto x;, como x5 y A en el
optimo dependerian de M.

£($1,x27 )\7 Map> = ’LL(.’L']_, 1‘2) + A (M — D171 — p2$2)7
y evaluando a lo largo de la solucién éptima (x5 (M, p), x5(M,p), \*(M, p)), se tiene

d dx¥ dxs d\*
* * *M / 1 / 2
o Llets 23, X5 M. p) = ﬁfl dM ﬁw? a L* ar L
0 0 0 —)\

Por las condiciones de primer orden en el 6ptimo,
L, (27,23, N5 M,p) =0, L (27,23, A\ M,p) =0, L(2],25,\"; M,p) =0,

Entonces d
U\[ﬁ(h x5, N M, p) = Las(z}, 25, A5 M, p) = XN(M,p) .
¢
En particular, como en el 6ptimo la restricciéon se cumple con igualdad M — pix] — paxs = 0, el
Lagrangiano evaluado en el éptimo coincide con la utilidad:

v(M,p) = u(xi,z3) = L(x7,23,\"; M,p).
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La conclusién entonces es que

ov(M,p) 0L

- o = X (M,
oM oM (z7,25 ,X*;M,p) A ( p)

Es decir, A* mide el cambio marginal de la utilidad éptima cuando se relaja la restriccion presupuestaria
en una unidad, o sea, cuando se le da ingresos adicionales al individuo. Por eso \* se interpreta como utilidad
marginal del ingreso. Esto puede ser 1util ya que nos informa céomo cambia la utilidad si le brindamos al
individuo una unidad monetaria adicional.

Ejemplo
Datos: M = 100, p; = 10, py = 20, u(xy,12) = x323.

max xird s.a. 10z + 20z = 100, L(x1,29,\) = 2223 + X (100 — 102 — 2013).

T1,22>0

CPO
Lo =225 —10A =0, L, = 2x92? — 20\ = 0, Ly =100 — 10z; — 20x3 = 0.

De las dos primeras:

2 2
2x125 = 29zt

10 20 — 219 = I7.

Con la restriccion:
10(2x2) + 2022 = 100 = 40z = 100 = x5 =2.5, a7 =5.

v(100,10,20) = u(x}, z3) = 52 - 2.5% = 25 - 6.25 = 156.25.

Multiplicador lagrangiano

N = 227 (z5)? _ 25 (2.5)2 _10-6.25

= 6.25.
10 10 10 025

La interpretacién es la siguiente: si aumentamos el ingreso en una unidad (manteniendo precios), la
utilidad 6ptima aumenta en aproximadamente 6.25 unidades. O sea la nueva utilidad seria de 162.5
Ejemplo con minimizacién

El multiplicador de lagrange también puede interpretarse en el contexto de una minimizacion.
Datos: w; = 10, we = 40, meta de produccién = 100, tecnologia F(z1, 22) = \/z122.

min C=102; +402 s.a. +/z129 = 100, L(z1, 22, ) = 1021 + 4022 + 1 (100 — /21 22).

21,22>0

CPO

Lo, =10—p-L1272207 =0, £.,=40—p-L12"%217 =0, z1z = 100.

De las dos primeras:

Con la restriccién: z12; = 1002 = 21 (521) = 10,000 = 2% = 40,000 = 2} = 200, 23 = 50.
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Costo minimo e interpretacion de pu*
Cmin = 10 - 200 + 40 - 50 = 2000 + 2000 = 4000.
w = 2/wiwy = 2v10 - 40 = 40.

w* = 40 nos indica que al relajar la restriccion (es decir si en vez de exigir una produccién de 100,
exigimos solo 99 unidades), el costo minimo se reduce aproximadamente en 40. Por lo tanto el costo nuevo
seria de 3960.
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23 Optimizacion con restricciones de desigualdad

Problema con una sola variable independiente

Consideremos el problema
max f(x), feC'(R).

x>0

Un punto x* es méaximo local solo en una de estas dos situaciones:

e Interior: z* > 0y f/(z*) = 0. Aqui la restriccién no interviene y se cumple la condicién clédsica de
primer orden.

e Frontera: z* =0y f/(0) <0.

Obsérvese que f'(0) > 0 no puede corresponder a un méximo, pues implicarfa pendiente creciente al
inicio de la regién factible.
Graficamente los casos son los siguientes: f’(x) = 0 por lo que la restriccién no estd activa.

Y por dltimo también es posible que sucedan las dos cosas al mismo tiempo: f'(z) =0y x = 0.
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-2+

Estas condiciones anteriores pueden resumirse:

De esas condiciones se deduce que necesariamente
r=0 o f'(z)=0,

pues la 1iltima igualdad obliga a que al menos uno de los factores sea cero.

e x f'(x) = 0: holgura complementaria.

Minimizacién

Anélogamente, para

las condiciones necesarias son

Ejemplo

Consideremos el problema
max f(x), f(a) = —a®—a—1,
x>0
Caso 1: la restriccién estd inactiva (6ptimo interior).
Si la restriccién no actuase, existirfa un maximo interior * > 0 y por lo tanto por la condiciéon de holgura
complementaria z f'(z) = 0 tenemos que:

Pero
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luego
—2r*—1=0 = az*=-

que contradice z* > 0. Por tanto no puede haber éptimo interior en la regién factible.

Caso 2: la restriccién esta activa (éptimo en la frontera).
La unica posibilidad restante es que x* = 0. Para verificar que es un maximo local basta comprobar la
condicién de primer orden en la frontera:

f(0)=-2-0-1=-1<0.

Conclusién: En este ejemplo la restriccion x > 0 estd activa en el 6ptimo (z* = 0), y el valor éptimo es
f(0)y=-1<0.
Graficamente:
f(z)
1

Problema con n variables independientes y restricciones de no neg-
atividad

Consideremos
max f(xla"'axn)a fecl(Rn)a
z€RY
es decir, sujeto a x; > 0 para j =1,...,n.
Las condiciones de primer orden adaptadas a estas restricciones son, para cada j =1,...,n:
of of
— < 0, z; > 0, r, — = 0,
Bscj - 7= J 83:]-

Problema con tres variables y dos restricciones de desigualdad
Planteamos primero el problema en forma de desigualdades:

max  f(x1,22,23)
T1,T2,T3
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sujeto a
g (z1, 2, 23) <11,
g% (@1, 22, 23) <19,
Ty, T9, x3 > 0.

Al anadir las variables ficticias s1, o > 0 podemos convertir cada desigualdad en una igualdad:
gl(xla x27x3> + S1 ="T1,
9 (21,00, 3) + 52 = 12,
T1, T2, T3, S1, S2 2 0.

Lagrangiano y condiciones de primer orden

A partir del problema con variables de holgura
max flx1, 29, x3)
1,X2,T3,51,52
sujeto a gl(fEl,l’g,l’g) + 81 =711,
92(1‘1,3027963) + 83 =72,
z; >0(j=1,2,3), s >0(=1,2),

definimos el Lagrangiano
L(z,8,A) = flz1,22,23) + A [r1 — g'(z1,22,23) — 51] + A2[r2 — ¢°(21, 22, 23) — $2].

Aqui A1, A2 € R son los multiplicadores asociados a las igualdades.

Condiciones de primer orden

%Zﬁ(m)—hg%(x)—)\ggf(x) <0, x >0, 127;1_07
a%i:fz(x)—)qg%(m)—)\zg%(x) <0, w5 >0, ng—é—o,
%:f:i(x)—)qgé(%)—)agg(x) <0, =3 >0, m3§7§3—0,
gfsﬁl:f)\l <0, s >0, 51%10,

%:—Az <0, sy >0, 52%:07
%:rl_gl($1,$2,x3)—51:07

%i =ry — g* (w1, 22,23) — 52 = 0.

Eliminacion de las variables ficticias de las condiciones de primer orden
Tomemos la condicién respecto a un multiplicador de lagrange:

oL

i
6)\1 T g (mlax27x3) Si B
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se despeja inmediatamente
s; = ri — g'(x1,x2,x3), i=1,2.

Ahora sustituimos s; en las tres condiciones

aL§07 81'20’ S%:Oa
8si i

recordando que 9L/0s; = —\;. Obtenemos:

ri — g (21,20, 13) >0
(Tifgi(ml,.’tz,’l}g)) (7)\1) =0 = N\ (Tifgi(flfl,‘fz,l‘g)) =0.
En consecuencia, las condiciones de Kuhn-Tucker quedan:

e,

8:5_7- -
zj 2 0, (j=1,2,3)
oL
! Ox;

)

=0

ri — g'(w1, w2, 23) > 0,
)\’i > 07 (/6:1*2)
i [/Z — gi(;lfl,élig,.'lfgﬂ =0

Véase que r; — ¢"(x1,x2, x3) coincide con la derivada del lagrangiano sin incluir las variables ficticias
s;. Entonces podemos expresar las condiciones de la siguiente manera:

%go, z; >0, .'rj%:[)
Ox; : 7 0x;
oL oL

>0, N>0, N— =0,

Resumen de las condiciones

Sea

Lz, \) = f(z1,...,2p) —&—Z)\i[m —gi(xl,...,xn)]

el Lagrangiano asociado a

max f(x) sujetoa g'(x)<wr(i=1,...,k)
z€RY

donde
R ={zeR":z;>0Yj=1,...,n}

Las condiciones de Kuhn—Tucker para un méaximo son

oL oL
— <0 >0 — =0 45=1,...
al'j_ r = zj@xj J ’ "
oL oL

>0, AN>0, Moo =0 i=1,..,k

on N
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Condiciones Kuhn-Tucker generales para un minimo

Sea,

L(z,\) :f(xl,...,acn)—&-Z)\i[ri_gi(xl,...,xn)]

el Lagrangiano asociado a '
min f(x) sujetoa g'(x)>r (i=1,...,k)
z€RY
donde
RY ={zeR":2; >0Vj=1,...,n}

Las condiciones de Kuhn—Tucker necesarias para un minimo son

oL oL
— >0 >0 i— =0 j5=1,...
al'j — ) JjJ — ) x_] al'j .7 ) )n
oL oL
<0, M0, Mol =0 i=1,....k
o = T o, !
Ejemplo maximizacion
Consideremos
z+y < 100,
max U(z,y) = zy sujeto a x < 40,
T,y
xz>0,y>0.

Asignamos multiplicadores A1, Ao > 0 a las dos primeras desigualdades y construimos el Lagrangiano
L(x,y,\, ) =xy+ M\ (100 —z— y) + )\2(40 - JC)

Las condiciones de Kuhn-Tucker se agrupan en:

%:y—)\l—/\QSO, x>0, x(y—A —X) =0,
g—j:x—)\l <0, y >0, y(x—)q):O,
8—L=100—x—y >0, A >0, A (100—z—y) =0,
oM

%:40—.1‘ 207 )\2 ZO, )\2(40—1‘):0.

0o

Analizando las regiones:
En el 6ptimo z*, y* > 0 ya que de lo contrario la utilidad seria 0, entonces las dos primeras desigualdades se
vuelven igualdades (por las condiciones de holgura complementaria)

y*—)\l—)\gz(), x*—)q:O.
Analizando las regiones, consideremos las cuatro combinaciones posibles de \; y Ao:

Caso 1: \; =0, Ay =0.
Entonces

%:ygo, %:xSO = xz=y=0,
ox Jy

con z,y > 0. Esto da U = 0, no es maximo interior con U > 0. (Descartado.)
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Caso 2: \; >0, Ay =0.
Por holgura complementaria en x,y > 0:

y—MA =0, -\ =0 = zx=y=A\,
y por la restriccion activa x + y = 100:
201 =100 = =y =50,
pero viola x < 40. (Descartado.)

Caso 3: \{ =0, Ay > 0.
Holgura complementaria obliga
40—-—x=0 = x =40,

Y yendo a la segunda condicién tenemos: x — A\; = 0. Pero como A\; = 0 y & = 40, esta condicién no
se cumple. (Descartado.)

Caso 4: A\ >0, Ay > 0.
Ambas restricciones activas:

x4+y=100, =40 = (x,y)= (40,60).
De las derivadas:
r—=A=0= A =40, y—A1—X=0 = X =20>0,
todo consistente. =" = 40, y* = 60, U = 2400.
Ejemplo minimizacién
Consideremos el problema

min C(x1,22) = (21 —4)2 + (m2—4)2

Z1,T2

sujeto a
2x1 4+ 3x9 > 6,
—3x1 — 2z9 > —12,
x1 >0, 2 > 0.

Reescribimos las dos primeras como
g(x) =6—2x1 — 3z < 0, go(x)=3w1+ 222 —12 < 0,
y asignamos multiplicadores A1, A2 > 0. El Lagrangiano es
L= (x;—4)*+ (2 —4)* + A1 (6 — 221 — 3x2) + Ao (327 + 229 — 12).
Condiciones de Kuhn-Tucker
—— =2(x1—4) — 2\ 4+ 32 > 0, 21 >0, z1[2(z1 —4) — 2\ +3X2] =0,
Frote 2(wa —4) — 3\ + 2X2 > 0, 22 >0, 22[2(z2 — 4) — 3\ +2X2] =0,

g1(x) =6 — 221 —3x5 <0, A\ >0, Ay (6 — 221 — 325) =0,
gg(x) = 3501 +2’I}2 —12 S 0, )\2 Z O, )\2 (3$1 +2’Jjg — 12) =0.
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Andlisis de casos Primero pensemos el caso de (4,4) que dada la funcién de costos puede ser un potencial
6ptimo. Sin embargo, (4,4) viola go. Por lo que vamos a analizar los otros casos posibles, suponiendo que

1 >0y x>0

>0 = a—L:O, o >0 = a—ﬁzo,
(9.7;1 (91'2

y de que las dos restricciones pueden estar activas o inactivas. Hay cuatro combinaciones de Aj, Ao > 0:

Caso 1: A\ =0, Ay =0.
De la derivada con respecto a x1: 2(xz1 —4) =0 =21 =4y 2(x2 —4) = 0 = x5 = 4. Pero la segunda
restriccion 3z1 + 2z2 < 12 se viola (20 > 12). Descartado.

Caso 2: A1 >0, \y =0.
De las condiciones obtenemos que:

21 —4) =201 =0 (z1=44X), 2(@2—4) -3\ =0 (22=4+3X\).
Ademas, A\; > 0 implica 2x1 4+ 3x9 = 6, que no admite A\; > 0. Descartado.

Caso 3: \{ =0, Ay > 0.

2(x1 —4)+3X =0 = 1 :4—%)\2,
2wy —4)+2X2=0 = z3=4— Ay,
y A2 > 0 obliga 3z + 2z = 12. Resolviendo:

28 36 16
= -5, T2 = -, -
13 13 13

Se verifica 6 — 221 — 3x2 < 0 (la primera restriccién es inactiva). Solucién valida.

Caso 4: A\ >0, Ay > 0.
Ambas restricciones activas:

2x1 4+ 3292 =6, 3x1+ 209 =12 = ($17I2)=(2T_)4,—

ailo

);

que viola x9 > 0. Descartado.

Por tanto, el uinico caso factible es A\ =0, A\ = %, con

[\v)
w
(=2}

w

).

(a1,25) = (25, %

Ejemplo sin restricciones de no negatividad

min f(x,y) = (z — 1)* +e¥
s.a. 20+y <5
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Problema de minimizacién propuesto

Consideremos el siguiente problema de optimizacién con restriccién de desigualdad:
min f(z,y) = (¢ —1)*+ ¢
T,y

sujeto a
—2x—y > —5.

Notemos que la restriccion puede reescribirse como
—2zx—-—y+5 > 0.
Para usar las condiciones de Kuhn—Tucker en la forma estdndar ¢g(z,y) < 0, definimos
g(z,y) = 2z +y—5) < 0.

Esta g(z,y) < 0 es algebraicamente la misma que la restriccién original —2z — y > —5, sélo escrita al otro
lado. Vamos a trabajar con g(z,y) para construir el Lagrangiano, pero cuando verifiquemos factibilidad
siempre vamos a chequear la forma original

—2x—y > —5.
Introducimos el multiplicador de Kuhn—Tucker A > 0. El Lagrangiano es

L(z,y,A)=(@—-1)"+e+A(2z+y—5).

Condiciones de Kuhn—Tucker Las condiciones KKT (necesarias y, como veremos, suficientes) son:

oL
(1) Estacionariedad: e 4(r—1)3+2X=0,
oL
—=eV+A=0
oy ¢ * ’
(2) Factibilidad primal: -2z —y > =5,
(3) Factibilidad dual: A >0,
(4) Holgura complementaria: A (2z +y —5) = 0.

Observacion importante: En el Lagrangiano usamos 2x 4+ y — 5, pero la factibilidad primal la seguimos
expresando en la forma original —2x — y > —5, es decir, “mayor o igual a un numero”.

Analisis de casos Vamos a estudiar las dos posibilidades para .

Caso 1: A\=0

Si A = 0, las ecuaciones de estacionariedad quedan:

4z —-1P4+0=0 = (z—-1P*=0 = =x=1,

e/+0=0 = €Y=0,

lo cual es imposible porque e¥ > 0 para todo y. Por lo tanto, A = 0 no puede describir el éptimo.
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Caso 2: A >0

Si A > 0, por holgura complementaria debe cumplirse
2¢0+y—5=0 =— y=>5-—2x.

Usamos estacionariedad otra vez. De

oL
— =+ A=0 = I=-¢"
Ay
Como A > 0, esto nos dice que —e¥ > 0, lo cual seria imposible. Esto sugiere que, con el Lagrangiano escrito
como
Lz, y,A) = f(z,y) + M2z +y —5),
el signo de A que hace que KKT funcione debe ser A < 0 si usamos 2z + y — 5 directamente.
Para evitar esa inconsistencia de signos, es mas cémodo (y estdndar) definir la restriccién negada en el
Lagrangiano, tal como se hizo en el ejemplo anterior:
Reescribimos:
glx,y)=5—-2x—y < 0,
que es exactamente la misma restriccién original —2z — y > —5, s6lo movida de lado. Ahora tomamos el
Lagrangiano en la forma

E(x,y,/\):(x—1)4+ey+)\(5—2x—y), A>0.

Volvemos a plantear las KKT con esta versién (que es la convencién usual y evita el problema de signo):

(1) Estacionariedad: g—ﬁ =4(z - 1) -2X1=0,
x
oL
— =eV-A=0
dy ¢ ’
(2) Factibilidad primal (forma original): —2x—y > —5,
(3) Factibilidad dual: A >0,
(4) Holgura complementaria: Ab—2z—y)=0.

Ahora si, analizamos casos con esta L.

Caso A: A=0

Si A = 0, de estacionariedad:
Yz—1P-0=0 = x=1.

Y
ey —0=0 = €Y=0,

imposible. Por lo tanto, A = 0 sigue sin ser factible.

Caso B: A >0

Si A > 0, por holgura complementaria la restriccién estéd activa:
5—2x—y=0 = y=>5-—2z.

9L _ 0.
De 5, =0:
ey—)\:O —t A:ey:e572z_
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4z —1P-22=0 = 2(x-1)°>=\
Igualando las dos expresiones de A:
20 — 1) = 7%,
Esa ecuacién determina el x 6ptimo. Resolviéndola numéricamente:
¥ =~ 2.0625.

Luego
y*=5—2z" ~ 5—2(2.0625) ~ 0.8750.

Y el multiplicador

*

No=e¥ ~ "870 ~ 23989 > 0,

consistente con la hipétesis A > 0.
Ahora verificamos la factibilidad en la forma original de la restriccion:

—2z* —y* =~ —2(2.0625) — 0.8750 ~ —5.0000 > —5.

Se cumple exactamente como igualdad: estamos sobre la frontera —2x — y = —5, es decir, “mayor o igual a
=5,
El valor de la funcién objetivo en (z*,y*) es

fla*y) = (" —1)* +e¥ ~ (2.0625 — 1)* 4+ e*50 ~ 3.6733.

Condiciones suficientes para minimo global La funcién objetivo

fly) =@-1)"+e

es convexa: (v — 1)* es convexa en z, y €Y es convexa en y; la suma de convexas es convexa.
El conjunto factible definido por
—2x—y > =5

es un semiespacio affn (una regién descrita por una desigualdad lineal), por lo tanto es convexo.

En un problema de minimizacién convexa con restricciones convexas (aqui lineales), cualquier punto
que satisface KKT es 6ptimo global.

Como encontramos (z*,y*) = (2.0625, 0.8750) con A* > 0 que satisface:

—2x* —y* > —5, y todas las condiciones KKT,

concluimos que

(z*,y*) ~ (2.0625, 0.8750)

es el minimizador global del problema original con la restriccién escrita en la forma

—2x—y > —5.

Condiciones suficientes

Como en el caso de optimizacion con restricciones y optimizacion libre, las condiciones suficientes van a estar
asociadas a la concavidad de las funciones analizadas. Vamos a ver dos tipos de condiciones, una sobre
concavidad y convexidad y otra més débil sobre cuasiconcavidad y cuasiconvexidad.
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Condiciones suficientes para maximo (y global)
Supongamos que el problema a resolver es:

Maximizar f(z)

sujeto a g <r (i=1,2,...,k),
x > 0.
Con z = (z1,x9,...) Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las

siguientes condiciones en un punto z*
1. La funcién objetivo f(z) es diferenciable y cdncava en el cuadrante n-dimensional no negativo.
2. Cada funcién de restriccién g*(z) es diferenciable y conveza en el cuadrante n-dimensional no negativo.

Entonces z* da un maximo global de f(z).
Existe un teorema asociado a condiciones mas débiles para poder determinar que estamos ante un
méximo, estas estdn asociados a la cuasiconcavidad y cuasiconvexidad de las funciones:

Teorema de Arrow-Enthoven para maximo
Supongamos que el problema a resolver es:
Maximizar f(x)
sujeto a gix) < rp (i=1,2,...,k),
x > 0.

Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las siguientes condiciones en
un punto x*

1. La funcién objetivo f(z) es diferenciable y cuasiconcava en el cuadrante n-dimensional no negativo.

2. Cada funcién de restriccién g'(x) es diferenciable y cuasiconvera en el cuadrante n-dimensional no
negativo.

3. Se satisface cualquiera de los siguientes:

(a) fj(z*) < 0 para al menos una variable x;.

(b) fj(xz*) > 0 para alguna variable x; relevante, esto quiere decir una variable que en el conjunto
factible (que cumpla con las restricciones), esa variable tome un valor positivo.

(c) Lasn derivadas f;(x*) no son todas cero, y la funcién f(x) es dos veces diferenciable en la vecindad
de z* (es decir, todas las derivadas parciales de segundo orden de f(x) existen para x*).

(d) La funcién f(x) es concava.

Entonces z* da un méaximo global de f(z).

Condiciones suficientes para minimo (y global)
Supongamos que el problema a resolver es:

Minimizar f(z)

sujeto a gixz) > (i=1,2,...,k),
z > 0.
Con = = (x1,%2,...) Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las

siguientes condiciones en un punto z*
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1. La funcién objetivo f(z) es diferenciable y convera en el cuadrante n-dimensional no negativo.
2. Cada funcién de restriccién ¢*(x) es diferenciable y cdncava en el cuadrante n-dimensional no negativo.

Entonces z* da un minimo global de f(x).

Teorema de Arrow-Enthoven para minimo

Supongamos que el problema a resolver es:

Minimizar f(x)
sujeto a gi(x) > r (i=1,2,...,k),
z > 0.
Asumiendo que se satisfacen las condiciones de Kuhn-Tucker. Si se satisfacen las siguientes condiciones en

un punto x*

1. La funcién objetivo f(z) es diferenciable y cuasiconveza en el cuadrante n-dimensional no negativo.

2. Cada funcién de restriccién g'(z) es diferenciable y cuasicéncava en el cuadrante n-dimensional no
negativo.

3. Se satisface cualquiera de los siguientes:

(a) fj(z*) > 0 para al menos una variable x;.
(b) fj(z*) < 0 para alguna variable x; relevante, esto quiere decir una variable que en el conjunto
factible (que cumpla con las restricciones), esa variable tome un valor positivo.

(c) Lasn derivadas f;(2*) no son todas cero, y la funcién f(x) es dos veces diferenciable en la vecindad
de 2* (es decir, todas las derivadas parciales de segundo orden de f(x) existen para x*).

(d) La funcién f(x) es convexa.

Entonces z* da un minimo global de f(z).

Ejemplo

Volvamos a este ejemplo
min C(xl,ll‘g) = (1‘1 - 4)2 + (ZL’Q — 4)2

T1,39

sujeto a  2x1 + 3x2 > 6,
—3x1 — 229 > —12,
1 >0, x922>0.

El potencial 6ptimo es x; = 28/13, x5 = 36/13. Vamos a chequear las condiciones de segundo orden con el
teorema de Arrow-Enthoven. La funcién objetivo en este caso es convexa por lo tanto es cuasiconvexa:

H(x1,22) = B g} .

2 0
0 2

Por otro lado, las funciones de las restricciones son lineales con lo cual son céncavas y convexas y por
lo tanto son cuasicéncavas y cuasiconvexas. Por ultimo, evaluamos una de las 4 condiciones de como por
ejemplo: f;(z*) < 0, para algin z; que tome un valor positivo en el éptimo:

Chequeando:

A1:2>0, AQ:det[ :|:4>0

Cp, =27 —4)<0

Esto implica que el 6ptimo es minimo global.
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24 Temas adicionales de optimizacion

Calificacién de las restricciones

Anteriormente cuando calculamos las condiciones de primer orden para maximos y minimos argumentamos
que estas son necesarias para obtener un punto éptimo. Sin embargo, existen casos donde por la naturaleza de
las restricciones, las condiciones de primer orden dejan de ser validas tanto para optimizacién con restricciones
de igualdad como optimizacién con restricciones de desigualdad. Véase el siguiente ejemplo:

Consideremos el problema de maximizar f(z,y) = z sujeto a la restriccién definida por

h(x,y) = 2® +y* = 0.
Armamos el lagrangiano:
L(xa Y, )‘) = f('r7 y) +A [—h(.ﬁ, y)] =z + /\(_‘TB - y2)

El sistema de ecuaciones que debemos resolver es:

oL

_— = 1 — 2 =
o 3\x 0,
oL

oy y=0,
oL — 3 2\ —

oL
Dea—y:Osesigueque/\:Ooy:().

Caso 1: A = 0. Entonces la primera ecuacién da 1 —3-0-22 =1 =0, que es imposible. Por lo tanto,
A#0.

Caso 2: Como A # 0, debe ser y = 0. La tercera ecuacién impone 2 + 32 =0= 22 =0=z = 0.
Sustituyendo x = 0 en la primera ecuacion:

1-3X2=1-3\-0=1=0,

nueva contradiccion.

En ambos casos se arriba a una contradiccién; por ende, el sistema no tiene solucién.

Sin embargo el problema si cuenta con un éptimo que es (0,0). Esto puede verse graficamente. Grafi-
cando la restriccién:

Como estamos maximizando una funcién que es f(z,y) = z, el punto éptimo se encuentra lo més al este
posible pero que cumpla al mismo tiempo con la restriccién, ese punto es el (0, 0).
Veamos otro ejemplo pero con restricciones de desigualdad:
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max f=umx
x1,T2

xg — (1 —a1)3 <0,
s.a. x>0,
i) 2 0.
L(r1,m2, 1) =21 + )\[mg -(1- xl)?’}
Este problema como el anterior puede ser resuelto graficamente graficando la restriccion:

X2

1

El resultado es que el punto éptimo resulta ser: (1,0). Sin embargo si chequeamos las condiciones de
primer orden, en particular la primera:

oL
— =1 A1 —21)? <
8.131 +3( 1’1) 70
Si 21 = 1 tenemos: 5
L
— =1
0x1 <0

Lo cual es contradictorio, nuevamente lo que sucede es que las restricciones de este problema dejan sin
efecto las condiciones necesarias. El problema que pueden generar estos casos ”patoldgicos” es que a veces
las restricciones no permiten la tangencia entre las curvas de nivel de la restriccion y curvas de nivel de
la funcién objetivo entre otras cosas. La forma de resolver este problema es requerir que el conjunto de
restricciones cumpla con ciertas condiciones. Por ejemplo, si las restricciones fueran todas lineales, no habria
problema, o si el problema fuera de maximizacién y las restricciones fueran todas convexas tampoco habria
problema. Un resumen de las condiciones de calificaciéon puede verse a continuacién:

Teoremas de calificaciéon de restricciones para maximos

Sea f,g1,...,9% y supéngase que z*¥ € R™ es un maximo local de f sobre el conjunto definido por las
restricciones
gl(x) S T1y, «-vy gk?(x) S Tk-
Para simplificar la notacién, supéngase que g1, . . ., g, son las restricciones activas en x*, y que gp+1, - - -, gk

no lo son. Supéngase que las funciones de restriccién activas satisfacen una de las siguientes propiedades:

(a) La matriz jacobiana de las restricciones activas es

9y
(di/<1*)> i=1,...h j=1,...,n.

Los gradientes de las restricciones activas son linealmente independientes en x*, es decir, generan un

subespacio de dimensién igual al niimero de restricciones activas.
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(b) g1,---,gn son funciones convexas.
(¢) g1,...,gn son funciones lineales.

Entonces, podemos aplicar las condiciones de primer orden sin problemas.

Teoremas de calificacién de restricciones para minimos

Sea f,g1,...,9k y supongase que x* € R™ es un minimo local de f sobre el conjunto definido por las
restricciones
gi(x) =71, ..y gr(x) > 1
Para simplificar la notacion, supéngase que g, . . ., g5 son las restricciones activas en x*, y que gp41, - - -, gk

no lo son. Supdngase que las funciones de restriccion activas satisfacen una de las siguientes propiedades:

(a) La matriz jacobiana de las restricciones activas es

dg; . .

—— (")), i=1,...,h, j=1,...,n

()T;
Los gradientes de las restricciones activas son linealmente independientes en x*, es decir, generan un
subespacio de dimensién igual al niimero de restricciones activas.

(b) g1,---,gn son funciones céncavas.
(¢) g1,.-.,gn son funciones lineales.

Entonces, podemos aplicar las condiciones de primer orden sin problemas.

Volviendo con el ejemplo anterior, podemos ver que no hay independencia lineal en el gradiente de las

restricciones ya que estos son:
Consideremos las restricciones en forma estandar g;(x1, z2) < 0:

g1(z1,m2) = 13 — (1 — 21),
ga2(z1,72) = —1,
g3(w1,T2) = —xa.
El punto candidato al éptimo es z* = (1,0). Evaluamos cudles restricciones son activas:
91(1,0) =0,  g2(1,0)=-1<0,  g5(1,0)=0.
Por lo tanto, las restricciones activas son g1 y gs.
Calculamos los gradientes:
Vgi(z1,22) = (gzivgi:) = (3(1—=21)% 1),
Vga(z1,22) = (-1, 0), Vgs(z1,z2) = (0, —1).
Evaluando en z* = (1, 0):

Vg1(1,0) = (0, 1), Vg3(1,0) = (0, —1).

Se observa que
Vgs(1,0) = = Vg1 (1,0),
por lo que los gradientes de las restricciones activas no son linealmente independientes en x*.
En consecuencia, la condicién de independencia lineal de gradientes no se cumple en este punto. Tam-
poco se cumplen que las restricciones sean convexas ni lineales y por esa razén las condiciones de primer
orden dejan de ser validas.
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25 Apéndice sobre Algebra

Determinantes
Idea general

Para una matriz cuadrada A € R™"*" el determinante det(A) es un nimero que mide, entre otras cosas, el
factor de cambio de volumen de la transformacion lineal asociada, y nos permite saber si A es invertible

A es invertible <= det(A) #0

Para una intuicién grafica del determinante ver el video “El determinante” de 3BluelBrown. Este
apartado se reduce solamente al calculo del mismo.

Férmulas basicas

En el caso de una matriz 2 x 2:

A:(a b

c d)’
det(A) = ad — be

Para el caso mas sencillo de una matriz 2 x 2 el determinante se calcula a través de multiplicar los elementos
de una diagonal y restarlos por el producto de la otra.

2 3
Sea A = (4 5). Entonces

det(A) =2-5—-3-4=10—12 = —2

Para el caso de una matriz 3 x 3
Podemos calcular a través de dos métodos diferentes:

Regla de Sarrus

Para A =

Q@ Q.
>0 o

c
f 1, duplicamos las dos primeras filas debajo para formar la matriz expandida:
i

LI
QO oS0 o
0 S0

Las tres diagonales descendentes (N\,) se suman y las tres ascendentes (') se restan. En notacién de
entradas a;; y también con letras:

suman: aei, bfg, cdh
restan: ceg, afh, bdi

Por lo tanto

det(A) = aci+bfg+ cdh — ceg — afh — bdi
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Ejemplo
1 2 3
A=10 -1 4
2 1 0

Duplicamos las dos primeras filas debajo para formar la matriz expandida

1 2 3
0 -1 4
2 1 0
1 2 3
0 -1 4

Las diagonales descendentes \, se suman y las ascendentes ' se restan

suman: 1-(—1)-0, 2-4-2, 3-0-1

restan: 3-(—1)-2, 1-4-1, 2-0-0
Por lo tanto
det(A)=1-(-1)-0+2-4-2+3-0-1—-3-(=1)-2—-1-4-1-2-.0-0=18

A través de los cofactores (Laplace)

Sea A = [aij]. Para cada entrada a;j, definimos su menor M;; como el determinante de la submatriz que se
obtiene al borrar la fila ¢ y la columna j. El cofactor es

Cyj = (1) My,

Con estos cofactores, podemos expandir por cualquier fila ¢ o columna j
n
det(A) = Z 427 Cij
j=1

Veamos como hacerlo con una matriz 3 x 3 aunque este método sirve para matrices cuadradas de cualquier
dimension.

Tomemos
a b c
A=1[d e f
g h i

Cofactor asociado al elemento ¢« = a;; Su menor se obtiene borrando la fila 1 y la columna 1, quedando
la submatriz en rojo

a b c
A=1[d e f
g h i

My, :det((; {)) —ei— fh

Como 1+ 1 es par, el cofactor es positivo

Cr= (=DM =ei — fh
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Cofactor asociado al elemento b = a1, Ahora borramos la fila 1 y la columna 2, y el menor queda

a b ¢
A=1[d e f
g h 1

Mm:da(Cf{))zm—fg
Como 1+ 2 es impar, el cofactor cambia de signo

Cip = (=)' My = —(di — fg) = fg — di

Cofactor asociado al elemento ¢ = a;3 Borrando la fila 1 y la columna 3

a b c
A=1[d e f
g h 1

M3 = det ((g ;>> =dh —eg

Ciz = (-1)'"*3*My3 =dh —eg

Y como 1+ 3 es par

Expansién de Laplace por la primera fila La expansién det(A) = aCi1 + bCia + ¢Ci3 se ve, con

nuestros colores, asi
det(A) = C]] a—+ C]2 b + C];; C

es decir
det(A) =a(ei — fh)+b(fg —di) + c(dh — eg)

De esta forma podemos calcular el determinante de una matriz tomando cualquier fila o columna de la
misma y aplicando la expansién de Laplace. Una recomendacion es siempre intentar elegir la fila o columna
con mayor cantidad de ceros de tal forma de anular varios términos al escribir la expansion.

Ejemplo
Calculemos det(A) expandiendo por la primera columna

2 0 3
A=(1 4 -1
0 2 5

Término con a;; =2 Borramos fila 1 y columna 1. El menor es el determinante de la submatriz en rojo

3

2 0 4
A= 1 4 -1 M11 = det(
0 2

~1
5 5>_45—04y2_m

5

C = (—1)1+1M11 =22 aporte = a1 C1 =2-22=44
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Término con ao; =1 Borramos fila 2 y columna 1

0 3
4 -1 M21 = det(
2

5

0 3

5
! 2 5

A= >:0-5—3-2:—6

0

Coy = (=1)*T My = —(—6) = 6 aporte =ag Uy =1-6=6
Término con az; =0 Aporta 0, pero mostramos su menor para completar la idea

~1 My =det(? 2 ) =0-(-1)-3-4=-12
. 4 -1

A:

S = N
B

C;gl = (—1)3+1M31 =—-12 aporte = a3y C;gl =0- (—12) =0

Suma de aportes
det(A) = a11C11 + a21C91 + a31C51 =44+ 640 =50

Multiplicacién de matrices

Dados A € R™*™ y B € R"*P, definimos el producto C = AB € R™*? por

n
Cij = E @ik brj
k=1

Solo podemos multiplicar matrices cuando el niimero de columnas de A coincide con el ntmero de filas de
B. En caso contrario, el producto no estd definido. El resultado final es una matriz con la cantidad de filas
de A y la cantidad de columnas de B.

Intuicion
e Fila por columna: ¢;; es el producto punto de la fila ¢ de A con la columna j de B

Una forma de entender el procedimiento es que para cada elemento de fila i y columna j de la matriz final va
a estar implicada la fila i de la primera matriz y la columna j de la segunda matriz.

Ejemplo

Sea,
2 -1 0
A= <1 3 2) ’ b=

Calculamos C = AB € R?*2 por fila por columna

N O
|
_

cin = (2)(1) + (=1)(0) + (0)(2) = 2
ci2 = (2)(4) + (=D(=1) + (0)(5) =9

4 Producto punto entre dos vectores u = (u1,...,un) y Vv = (v1,...,0n):

n
u-v = E Uk Vi
k=1
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c22 = (1)(4) + 3)(=1) + (2)(5)

2
AB = (5 1)

1

en = (1) +B3)(0)+(2)(2) =5
1
9

Ejemplo 2 x 2

Sea
3 -2 4 0
=07 ()
Calculamos C = AB € R?*2 por fila por columna

1 =3-4+(-2)-(-1)=12+2=14

612:3'0+(—2)-2=O—4:—4
021:144’5(*1):475:71
c22=1-0+5-2=04+10=10

14 -4
AB<—1 10>

3 x2por 2x3

Sea,

Calculamos C = AB € R3*3

1 =1:242(-1)=2-2=0, c2=1-142-4=1+4+8=9, ¢3=1-0+2-3=0+6=6

621:O~2+(—1)-(—1): , 022:0'1+(—1)'4:—4, 023:0'0+(—1)'3=—3

e31=3-241-(—1)=6—-1=5, c35=3-141-4=3+4="7,

0 9 6
4 -3

AB= 11
5 7 3

c33=3-0+1-3=3
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